Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T05:02:05.995Z Has data issue: false hasContentIssue false

A p-adic approach to solutions of a polynomial congruence modulo pα

Published online by Cambridge University Press:  26 February 2010

J. H. H. Chalk
Affiliation:
Department of Mathematics, Imperial College, Huxley Building, 180 Queen's Gate, London, SW7 2BZ
Get access

Extract

Let where a0≠0, m≥2, n = e1 + … + em and the ξi(1≤im) are the distinct zeros of f in some algebraic closure of the p-adic field . Then K = 1, ξ2, …, ξm) is a finite separable extension of and we denote by “ord” the unique extension of the (additive) p-adic valuation on to K, normalized with ord p = 1.

Type
Research Article
Copyright
Copyright © University College London 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chalk, J. H. H.. On a congruence related to character sums. Canadian Math. Bulletin, 28 (1985), 431439.CrossRefGoogle Scholar
2. Chalk, J. H. H. and Smith, R. A.. Sàndor's theorem on polynomial congruences and Hensel's lemma. Complex Rendus, Math. Rep. Acad. Sci. Canada, No. 1, 4 (1982), 4954.Google Scholar
3. Loxton, J. and Smith, R. A.. On Hua's estimate for exponential sums. Journal London Math. Soc. (2), 26 (1982), 1520.CrossRefGoogle Scholar
4. Nagell, T.. Généralisation d'un théorème de Tchebicheff. Jour, de Math. VIII, série 4 (1921), 343356.Google Scholar
5. Ore, Øystein. Anzahl der Wurseln hoherer Kongruenzen. Norsk. Matematisk Tidsskrift, 3 Aagang, Kristiania 1921, 6366.Google Scholar
6. Sándor, G.. Über die Anzahl der Losungen einer Kongruenz. Acta Math., 87 (1952), 1316.CrossRefGoogle Scholar
7. Stewart, C. L.. On the number of solutions of the Thue and Thue-Mahler equations. In preparation.Google Scholar