Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T01:44:30.506Z Has data issue: false hasContentIssue false

ORBITOPES

Published online by Cambridge University Press:  29 June 2011

Raman Sanyal
Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720, U.S.A. (email: [email protected])
Frank Sottile
Affiliation:
Department of Mathematics, Texas A & M University, College Station, Texas 77843, U.S.A. (email: [email protected])
Bernd Sturmfels
Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720, U.S.A. (email: [email protected])
Get access

Abstract

An orbitope is the convex hull of an orbit of a compact group acting linearly on a vector space. These highly symmetric convex bodies lie at the crossroads of several fields, including convex geometry, algebraic geometry, and optimization. We present a self-contained theory of orbitopes, with particular emphasis on instances arising from the groups SO(n) and O(n); these include Schur–Horn orbitopes, tautological orbitopes, Carathéodory orbitopes, Veronese orbitopes, and Grassmann orbitopes. We study their face lattices, algebraic boundaries, and representations as spectrahedra or projected spectrahedra.

Type
Research Article
Copyright
Copyright © University College London 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Atiyah, M. F., Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14(1) (1982), 115.CrossRefGoogle Scholar
[2]Avis, D., Imai, H. and Ito, T., On the relationship between convex bodies related to correlation experiments with dichotomic observables. J. Phys. A 39(36) (2006), 1128311299.Google Scholar
[3]Barvinok, A., A Course in Convexity (Graduate Studies in Mathematics 54), American Mathematical Society (Providence, RI, 2002).Google Scholar
[4]Barvinok, A. and Blekherman, G., Convex geometry of orbits. In Combinatorial and Computational Geometry (Mathematical Sciences Research Institute Publications 52), Cambridge University Press (Cambridge, 2005), 5177.Google Scholar
[5]Barvinok, A. and Novik, I., A centrally symmetric version of the cyclic polytope. Discrete Comput. Geom. 39(1–3) (2008), 7699.CrossRefGoogle Scholar
[6]Basu, S., Pollack, R. and Roy, M.-F., Algorithms in Real Algebraic Geometry, 2nd edn. (Algorithms and Computation in Mathematics 10), Springer (Berlin, 2006).CrossRefGoogle Scholar
[7]Blekherman, G., Dimensional differences between nonnegative polynomials and sums of squares. Preprint, 2009, arXiv:0907.1339.Google Scholar
[8]Carathéodory, C., Über den Variabilitätsbereich der Koeffizienten von Potenzreihen die gegebene Werte nicht annehmen. Math. Ann. 64 (1907), 95115.Google Scholar
[9]Dadok, J. and Harvey, R., Calibrations on R 6. Duke Math. J. 50(4) (1983), 12311243.Google Scholar
[10]Fan, K., Maximum properties and inequalities for the eigenvalues of completely continuous operators. Proc. Natl. Acad. Sci. USA 37 (1951), 760766.Google Scholar
[11]Farran, H. R. and Robertson, S. A., Regular convex bodies. J. Lond. Math. Soc. (2) 49(2) (1994), 371384.CrossRefGoogle Scholar
[12]Fenchel, W., Über Krümmung und Windung geschlossener Raumkurven. Math. Ann. 101(1) (1929), 238252.CrossRefGoogle Scholar
[13]Fulton, W. and Harris, J., Representation Theory (Graduate Texts in Mathematics 129), Springer (New York, 1991).Google Scholar
[14]Gelfand, I. M., Kapranov, M. M. and Zelevinsky, A. V., Discriminants, Resultants, and Multidimensional Determinants (Mathematics: Theory and Applications), Birkhäuser (Boston, 1994).Google Scholar
[15]Guillemin, V. and Sternberg, S., Convexity properties of the moment mapping. Invent. Math. 67(3) (1982), 491513.Google Scholar
[16]Harvey, R. and Lawson, H. B. Jr, Calibrated geometries. Acta Math. 148 (1982), 47157.Google Scholar
[17]Harvey, R. and Morgan, F., The faces of the Grassmannian of three-planes in R 7 (calibrated geometries on R 7). Invent. Math. 83(2) (1986), 191228.CrossRefGoogle Scholar
[18]Helton, J. W. and Nie, J., Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20(2) (2009), 759791.CrossRefGoogle Scholar
[19]Henrion, D., Semidefinite representation of convex hulls of rational varieties. Acta Appl. Math. (to appear), arXiv:0901.1821.Google Scholar
[20]Hilbert, D., Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32 (1888), 342350.CrossRefGoogle Scholar
[21]Lasserre, J. B., Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3) (2000/01), 796817 (electronic).Google Scholar
[22]Leite, R. S., Richa, T. R. W. and Tomei, C., Geometric proofs of some theorems of Schur–Horn type. Linear Algebra Appl. 286(1–3) (1999), 149173.CrossRefGoogle Scholar
[23]Longinetti, M., Sgheri, L. and Sottile, F., Convex hulls of orbits and orientations of a moving protein domain. Discrete Comput. Geom. 43(1) (2010), 5477.CrossRefGoogle Scholar
[24]Madden, T. M. and Robertson, S. A., The classification of regular solids. Bull. Lond. Math. Soc. 27(4) (1995), 363370.Google Scholar
[25]McCarthy, N., Ogilvie, D., Zobin, N. and Zobin, V., Convex geometry of Coxeter-invariant polyhedra. In Trends in Banach Spaces and Operator Theory (Memphis, TN, 2001) (Contemporary Mathematics 321), American Mathematical Society (Providence, RI, 2003), 153179.Google Scholar
[26]Morgan, F., The exterior algebra ΛkR n and area minimization. Linear Algebra Appl. 66 (1985), 128.Google Scholar
[27]Nie, J., Ranestad, K. and Sturmfels, B., The algebraic degree of semidefinite programming. Math. Program. 122 (2010), 379405.CrossRefGoogle Scholar
[28]Nie, J. and Sturmfels, B., Matrix cubes parametrized by eigenvalues. SIAM J. Matrix Anal. Appl. 31 (2009), 755766.Google Scholar
[29]Onn, S., Geometry, complexity, and combinatorics of permutation polytopes. J. Combin. Theory Ser. A 64(1) (1993), 3149.CrossRefGoogle Scholar
[30]Ranestad, K. and Sturmfels, B., The convex hull of a variety. In Notions of Positivity and the Geometry of Polynomials (Trends in Mathematics) (eds Brändén, P., Passare, M. and Putinar, M.), Springer (Basel, 2011), 331344.CrossRefGoogle Scholar
[31]Recht, B., Fazel, M. and Parrilo, P. A., Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3) (2010), 471501.Google Scholar
[32]Reznick, B., Sums of even powers of real linear forms. Mem. Amer. Math. Soc. 96(463) (1992).Google Scholar
[33]Schur, I., Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Theorie Sitzungsber. Berlin Math. Ges. 22 (1923), 920.Google Scholar
[34]Smilansky, Z., Convex hulls of generalized moment curves. Israel J. Math. 52(1–2) (1985), 115128.Google Scholar
[35]Sturmfels, B. and Uhler, C., Multivariate Gaussians, semidefinite matrix completion and convex algebraic geometry. Ann. Inst. Statist. Math. 62 (2010), 603638.Google Scholar
[36]Vinzant, C., Edges of the Barvinok–Novik orbitope. Discrete Comput. Geom. (2011), doi:10.1007/S00454-011-9351-y, arXiv:1003.4528 .CrossRefGoogle Scholar
[37]Weis, S., A note on touching cones and faces. J. Convex Anal. 19(2) (2012), available online athttp://www.heldermann.de/JCA/JCA19/JCA192/jca19018.htm.Google Scholar
[38]Ziegler, G. M., Lectures on Polytopes (Graduate Texts in Mathematics 152), Springer (New York, 1995).Google Scholar