Article contents
On the classgroup of integral grouprings of finite Abelian groups II
Published online by Cambridge University Press: 26 February 2010
Extract
In this note I settle a question which arose out of my first paper under the above title (cf. [1]), where I considered the classgroup C(Z(Γ)) of the integral groupring Z(Γ) of a finite Abelian group Γ. This classgroup maps onto the classgroup C() of the maximal order
of the rational groupring Q(Γ), and C(
) is the product of the ideal classgroups of the algebraic number fields which occur as components of Q(Γ) and is thus in a sense known. One is then interested in the kernel D(Z(Γ)) of C(Z(Γ)) → C(
) and in its order k(Γ). In [1] I proved that, for Γ a p-group, k(Γ) is a power of p. I also computed k(Γ) for small exponents. My computation used crucially the fact that, for the groups Γ considered, the groups of units of algebraic integers which occurred were finite, i.e. that the only number fields which turned up were Q and Q(n) with n4 = 1 or n6 = 1. The numerical results obtained led me to the question whether in fact k(Γ) tends to infinity with the order of Γ.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1972
References
- 14
- Cited by