Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T14:07:40.629Z Has data issue: false hasContentIssue false

Low dimensional lattices have a strict Voronoï basis

Published online by Cambridge University Press:  26 February 2010

Andrew J. Mayer
Affiliation:
Center for Communications Research, 4320 Westerra Court, San Diego, CA 92121, U.S.A.
Get access

Abstract

We prove a generalization of a theorem of Ryshkov relating the Voronoï vectors of lattices to the defining conditions for the Minkowski fundamental domain . This is then used to prove that a Minkowski reduced basis of a lattice of dimension n < 7 consists of strict Voronoï vectors.

Type
Research Article
Copyright
Copyright © University College London 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cassels, J. W. S.. Rational Quadratic Forms (Academic Press, NY, 1978).Google Scholar
2.Conway, J. H. and Sloane, N. J. A.. Low dimensional lattices VI. In Proc. Roy. Soc. London A (1992), p. 55.Google Scholar
3.Conway, J. H. and Sloane, N. J. A.. Sphere Packings, Lattices and Groups (Springer-Verlag, 1988).CrossRefGoogle Scholar
4.Mayer, A. J.. A tiling property of the Minkowski fundamental domain. Ph.D. Thesis (Princeton University, 1993).Google Scholar
5.Minkowski, H.. Diskontinuitàtsbereich für arithmetische aequivalenz. Ges. Abh., 2 (1911), p. 53.Google Scholar
6.Minkowski, H.. Sur la reduction des formes quadratiques positives quaternaires. Ges. Abh., 1 (1911), p. 145.Google Scholar
7.Minkowski, H.. Über positive quadratische formen. Ges. Abh., 1 (1911), p. 149.Google Scholar
8.Minkowski, H.. Zur theorie der positiven quadratischen formen. Ges. Abh., 1 (1911), p. 212.Google Scholar
9.Ryshkov, S. S.. The theory of Hermite-Minkowski reduction of positive definite quadratic forms. Investigations in Number Theory 2, Zap. Nauchn. Ser. Leningrad Otdel. Mat. Inst. Steklov (LOMI), 33 (1973), p. 37. (English Translation: Journal of Soviet Mathematics, Vol. 6 (1976), p. 651.)Google Scholar
10.Siegel, C. L.. Lectures on the Geometry of Numbers (Springer-Verlag, 1989).CrossRefGoogle Scholar
11.Tammela, P.. The Hermite-Minkowski domain of reduction of positive definite quadratic form in six variables. LOMI, 33 (1973), p. 72. (English Translation: Journal of Soviet Mathematics, Vol. 6 (1976), p. 677.)CrossRefGoogle Scholar
12.Tammela, P.. Minkowski's fundamental reduction domain for positive quadratic forms of seven variables. LOMI, 57 (1977), p. 108 and p. 226. (English Translation: Journal of Soviet Mathematics, Vol. 16 (1981), p. 836.)CrossRefGoogle Scholar