Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T13:14:14.801Z Has data issue: false hasContentIssue false

Infima of hyperspace topologies

Published online by Cambridge University Press:  26 February 2010

C. Costantini
Affiliation:
Dipartimento di Matematica, Universitá di Milano, Via Saldini 50, 20133 Milano, Italy.
S. Levi
Affiliation:
Dipartimento di Matematica, Universitá di Milano, 20133 Milano, Italy.
J. Pelant
Affiliation:
Czech Academy of Sciences, Department of Mathematics, Žitná 25, 11567 Praha 1, Czech Republic.
Get access

Abstract

We study infima of families of topologies on the hyperspace of a metrizable space. We prove that Kuratowski convergence is the infimum, in the lattice of convergences, of all Wijsman topologies and that the cocompact topology on a metric space which is complete for a metric d is the infimum of the upper Wijsman topologies arising from metrics that are uniformly equivalent to d.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

At.Atsuji, M.. Uniform continuity of continuous functions of metric spaces. Pacific J. Math., 8(1958), 1116.CrossRefGoogle Scholar
Be 1.Beer, G.. Metric spaces with nice closed balls and distance functions for closed sets. Bull. Austral. Math. Soc, 35 (1987), 8196.Google Scholar
Be 2.Beer, G.. Wijsman convergence of convex sets under renorming. Nonlinear Anal. To appear.Google Scholar
BLLN.Beer, G., Lechicki, A., Levi, S. and Naimpally, S.. Distance functional and suprema of hyperspace topologies. Ann. Mat. Pura Appl. (4), 162 (1992), 367381.Google Scholar
Chr.Christensen, J. P. R.. Topology and Borel Structure. (North-Holland, Amsterdam, 1974).Google Scholar
CLZ.Costantini, C., Levi, S. and Zieminska, J.. Metrics that generate the same hyperspace convergence. Set-Valued Analysis, 1 (1993), 141157.CrossRefGoogle Scholar
CV.Costantini, C. and Vitolo, P.. On the infimum of the Hausdorff metric topologies. Proc. London Math. Soc, 70 (1995), 414480.Google Scholar
DG.Dolecki, S. and Greco, G.. Cyrtologies of convergences, I. Math. Nachr., 126 (1986), 327348.CrossRefGoogle Scholar
DGL.Dolecki, S., Greco, G. and Lechicki, A.. When do the upper Kuratowski and co-compact topologies coincide. C.R. Acad. Sci. Paris, Ser I, 312 (1991), 923926.Google Scholar
Du.Dugundji, J.. Topology (Allyn and Bacon, Boston 1966).Google Scholar
En.Engelking, R.. General Topology. Revised and completed edition (Heldermann Verlag, Berlin, 1989).Google Scholar
Fl.Flachsmeyer, J.. Verschiedene Topologisierungen im Raum der abgeschlossene Mengen. Math. Nach., 26 (1964), 321337.Google Scholar
FLL.Francaviglia, S., A. Lechicki and S. Levi. Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions. J. Math. Anal. Appl., 112 (1985), 347370.CrossRefGoogle Scholar
HL.Hola, L. and Lucchetti, R.. Comparison of hypertopologies. Set-Valued Analysis. To appear.Google Scholar
HP.Hille, E. and Phillips, R. S.. Functional Analysis and Semi-groups. American Mathematical Society Colloquium Publications (Vol. XXXI) (Providence, 1957).Google Scholar
Kl.Klee, V. L.. Some characterizations of compactness. Am. Math. Monthly, 58 (1951), 389393.CrossRefGoogle Scholar
Ku.Kuratowski, K.. Topology, Vol. I (Academic Press, New York, 1966).Google Scholar
1.Lechicki, LL. A. and Levi, S.. Wijsman convergence in the hyperspace of a metric space. Boll. Un. Mat. Itat. (7), B.1 (1987), 439451.Google Scholar
LLP.Levi, S., Lucchetti, R. and Pelant, J.. On the infimum of the Hausdorff and Vietoris topologies. Proc. Amer. Math. Soc, 118 (1993), 971978.Google Scholar