Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T18:06:09.385Z Has data issue: false hasContentIssue false

Inequalities for dual isoperimetric deficits

Published online by Cambridge University Press:  26 February 2010

R. J. Gardner
Affiliation:
Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063, U.S.A. e-mail: [email protected]
S. Vassallo
Affiliation:
Universitá Cattolica del S. Cuore, Largo Gemelli 1, 1-20123 Milan, Italy. e-mail: [email protected]
Get access

Abstracat

We study dual isoperimetric deficits of star bodies. We introduce the dual Steiner ball of a star body, and use it to establish an inequality for the Lp distance, p = 2 and p = ∞, between the radial functions of two convex bodies. By applying this inequality, we find dual Bonnesen-type inequalities for convex bodies. Finally, we use a general form of Grüss's inequality to derive dual Favard-type inequalities for star and convex bodies. The results contribute to the dual Brunn–Minkowski theory initiated by E. Lutwak, and continue the attempt to understand the relation between this and the classical Brunn–Minkowski theory.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Favard, J.. Sur le déficit isopérimétrique maximum dans une couronne circulaire. Mat. Tidsskr. B, (1929), 6268.Google Scholar
2.Gardner, R. J.. Geometric Tomography (Cambridge University Press, New York, 1995).Google Scholar
3.Gardner, R. J.. Geometric tomography. Notices Amer. Math. Soc, 42 (1995), 422429.Google Scholar
4.Gardner, R. J. and Volcic, A.. Tomography of convex and star bodies. Advances in Math., 108 (1994), 367399.CrossRefGoogle Scholar
5.Groemer, H.. Stability of geometric inequalities. Handbook of Convexity, ed. by Gruber, P. M. and Wills, J. M. (Amsterdam, North-Holland, 1993), 125150.Google Scholar
6.Groemer, H.. Stability results for convex bodies and related spherical integral transforms. Advances in Math., 109 (1994), 4574.CrossRefGoogle Scholar
7.Groemer, H. and Schneider, R.. Stability estimates for some geometric inequalities. Bull. London Math. Soc, 23 (1991), 6774.CrossRefGoogle Scholar
8.Grüss, G.. über das Maximum des absoluten Betrages von Math. Z., 39 (1934), 215226.Google Scholar
12.Lutwak, E.. Intersection bodies and dual mixed volumes. Advances in Math., 71 (1988), 232261.CrossRefGoogle Scholar
10.Mitrinovic, D. S.. Analytic Inequalities, (Springer, Berlin, 1970).CrossRefGoogle Scholar
11.Osserman, R.. Bonnesen-style isoperimetric inequalities. Amer. Math. Monthly, 86 (1979), 129.CrossRefGoogle Scholar
12.Schneider, R.. Convex Bodies: The Brunn Minkowski Theory, (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
13.Vitale, R. A., Lp metrics for compact, convex sets. J. Approx. Theory, 45 (1985), 280287.CrossRefGoogle Scholar