Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T07:25:19.784Z Has data issue: false hasContentIssue false

The Geometry of an Equifacetal Simplex

Published online by Cambridge University Press:  21 December 2009

Allan L. Edmonds
Affiliation:
Department of Mathematics, Indiana University, Bloomington, IN 47405. U.S.A. E-mail: [email protected]
Get access

Abstract

Equifacetal simplices, all of whose codimension one faces are congruent to one another, are studied. It is shown that the isometry group of such a simplex acts transitively on its set of vertices and, as an application, equifacetal simplices are shown to have unique centres. It is conjectured that a simplex with a unique centre must be equifacetal. The notion of the combinatorial type of an equifacetal simplex is introduced and analysed, and all possible combinatorial types of equifacetal simplices are constructed in even dimensions.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Altshiller-Court, N., Modern Pure Solid Geometry, MacMillan, New York, 1935. Second edition, Chelsea, New York, 1964. {MR0172153 (30 #2379)}Google Scholar
2Berger, M., Geometry I, Springer-Verlag, Berlin, 1987. {MR1295239 (95g:51001)}Google Scholar
3Blumenthal, L. M., Theory and Applications of Distance Geometry, Chelsea Publishing Company, New York, 1953, second edition. {MR0268781 (42 #36)}Google Scholar
4Dekster, B. V. and Wilker, J. B., Edge lengths guaranteed to form a simplex, Arch. Math. (Basel) 49 (1987), no. 4, 351366 {MR0913169 (88k:51035)}Google Scholar
5Devidé, V., Über gewisse Klasse von Simplexen, Rad Jugoslav. Akad. Znan. Umjet. 370 (1975), 2137. {MR0477991 (57 #17487)}Google Scholar
6Devidé, V., Über eine Klasse von Tetraedern, Rad Jugoslav. Akad. Znanost. Umjetnpst 408 (1984), 4550. {MR0802053 (86j:51025)}Google Scholar
7Hartsfield, N. and Ringel, G., Pearls in Graph Theory, Academic Press, 1994. {MR1282717 (95k:05046)}Google Scholar
8Gardiner, T., Triangles and tetrahedra, quadrilaterals and cubes, Math. Gaz. 74 (1990), 357361.Google Scholar
9Grünbaum, B., Convex Polytopes, Interscience, London, 1967. Second edition, Springer-Verlag, New York, 2003. {MR1976856 (2004b:52001)}Google Scholar
10Honsberger, R., Mathematical Gems II, Dolciana Mathematical Expositions, No. 2, Mathematical Association of America, Washington, D.C., 1976. {MR0472273 (57 #11978)}Google Scholar
11Kimberling, C. C., Major centres of triangles. Amer. Math. Monthly 104 (1997), no. 5, 431438. {MR1447976 (98a:51016)}CrossRefGoogle Scholar
12Hajja, M. and Walker, P., Equifacial tetrahedra, Inter. J. Math. Ed. Sci. Tech. 104 (2001), 501508. Corrigendum, preprint, 2004. {MR1847966}CrossRefGoogle Scholar
13Kupitz, Y. S. and Martini, H., The Fermat-Torricelli point and isosceles tetrahedra, J. Geom. 49 (1994), 150162. {MR1261114 (95d:51015)}Google Scholar
14Martini, H. and Wenzel, W., Simplices with congruent k-faces, J. Geom. 77 (2003), 136139. {MR2000858 (2004h:52014)}CrossRefGoogle Scholar
15McMullen, P., Simplices with equiareal faces, Discrete Comput. Geom. 24 (2000), 397411. {MR1758059 (2001f:52025)}CrossRefGoogle Scholar
16Menger, K., New foundations of euclidean geometry, Amer. J. Math. 53 (1931), 721745.Google Scholar
17Rivin, I., Some observations on the simplex, Non-Euclidean Geometries: Janos Bolyai Memorial Volume (Ed. Prekopa, A. and Molnar, E.), Mathematics and its Applications 581, Springer (New York, 2006).Google Scholar
18Schoenberg, I. G., Remarks to Maurice Fréchet's article “Sur la définition axiomatique d'une classe d'espace distanciés vectoriellement applicable sur l'espace de Hilbert,” Annals of Math. (2) 36 no. 3 (1935), 724732. {MR1503248}CrossRefGoogle Scholar
19Weissbach, B., Euklidische d-Simplexe mit inhaltsgleichen k-Seiten, J. Geom. 69 (2000), 227233. {MR1800471 (2001j:52006)}CrossRefGoogle Scholar
20Ziegler, G., Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-Verlag, New York, 1995. {MR1311028 (96a:52011)}Google Scholar