Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T05:35:29.605Z Has data issue: false hasContentIssue false

A generalization of the Artin-Tschebotareff density theorem in positive characteristic

Published online by Cambridge University Press:  26 February 2010

Makoto Ishibashi
Affiliation:
Iwaki-Meisei University, 1-27-10 Kitahara-cho, Tanashi-shi, Tokyo 188, Japan.
Get access

Abstract

We shall give an explicit form of the Artin-Tschebotareff density theorem in function fields with several variable over finite fields. It may be an analogous prime number theorem in the higher dimensional case.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Artin, Emil. Quadratische Körper im Gebiet der höheren Kongruenzen I.II. Math. Zeit., 19 (1924), 153246.CrossRefGoogle Scholar
2.Artin, Emil. Über eine neue Art von L-Reihen. Hamb. Abb., (1923), 89108.CrossRefGoogle Scholar
3.Deligne, Pierre. La conjecture de Wiel, I. Publ. Math. IHES, 43 (1974), 273307.CrossRefGoogle Scholar
4.Fried, M. and Sacerdote, G.. Solving diophantine problems over all residue class fields of a number field and finite fields. Annals of Math., 104 (1976), 203233.CrossRefGoogle Scholar
5.Grothendieck, Alexander. Formule de Lefschetz et rationalité des fonction L. Seminaire Bour-baki, 279 (1965).Google Scholar
6.Goldstein, L. J.. Analytic Number Theory (Prentice-Hall, 1971).Google Scholar
7.Ishibashi, Makoto. Effective version of the Tschebotareff density theorem in function fields over finite fields. Bull London Math. Soc., 24 (1992), 5256.CrossRefGoogle Scholar
8.Lang, Serge and Weil, Andre. Number of points of varieties in finite fields. Amer. J. of Math., 76 (1954), 819827.CrossRefGoogle Scholar
9.Reichardt, Hans. Der Primdivisorsatz für algebraische Funktionenkörper uber einem endlichen Konstantenkörper. Math. Zeit., 40 (1936), 713719.CrossRefGoogle Scholar
10.Serre, J. P.. Zeta and L-functions. In Arithmetical Algebraic Geometry. Edited by Schilling, O. F. G. (1965), 8292.Google Scholar
11.Freitag, E. and Kiehl, R.. Etale cohomology and the Weil conjecture (Springer, 1988).CrossRefGoogle Scholar