Article contents
FRACTIONAL PARTS OF POLYNOMIALS OVER THE PRIMES. II
Published online by Cambridge University Press: 26 June 2018
Abstract
Let $\Vert \cdots \Vert$ denote distance from the integers. Let
$\unicode[STIX]{x1D6FC}$,
$\unicode[STIX]{x1D6FD}$,
$\unicode[STIX]{x1D6FE}$ be real numbers with
$\unicode[STIX]{x1D6FC}$ irrational. We show that the inequality
$$\begin{eqnarray}\Vert \unicode[STIX]{x1D6FC}p^{2}+\unicode[STIX]{x1D6FD}p+\unicode[STIX]{x1D6FE}\Vert <p^{-3/17+\unicode[STIX]{x1D700}}\end{eqnarray}$$
$p$, sharpening a result due to Harman [On the distribution of
$\unicode[STIX]{x1D6FC}p$ modulo one II. Proc. Lond. Math. Soc. (3)72 (1996), 241–260] in the case
$\unicode[STIX]{x1D6FD}=0$ and Baker [Fractional parts of polynomials over the primes. Mathematika63 (2017), 715–733] in the general case.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2018
Footnotes
Research supported in part by Collaboration Grant 412557 from the Simons Foundation.
References
- 3
- Cited by