Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T12:57:59.498Z Has data issue: false hasContentIssue false

Finite edge-to-edge tilings by convex polygons

Published online by Cambridge University Press:  26 February 2010

Roswitha Blind
Affiliation:
Waldburgstraße 88, 70563 Stuttgart, Germany E-mail: [email protected].
G. C. Shephard
Affiliation:
17 Mill Green, Stoke Holy Cross, Norwich NR 14 8PB, England, U.K. E-mail: [email protected].
Get access

Abstract

A tiling of a convex m-gon by a finite number r of convex n-gons is said to be of type <m, n, r>. The Main Theorem of this paper gives necessary and sufficient conditions on m, n and r for a tiling of type <m, n, r> to exist.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bernheim, B.. Partitions of convex polygons into pentagons (Hebrew). Riveon Lematematika, 1 (1947), 9598 {MR 9-152}.Google Scholar
2.Bernheim, B. and Motzkin, Th.. A criterion for divisibility of n-gons into k-gons. Comment. Math. Helv., 22 (1949), 93102. {MR 10-394}.Google Scholar
3.Bleicher, M. N.. Decomposition of a k l-gons. Mitt. Math. Sent. Giessen, 166 (1984), 116. {MR 86e51029}.Google Scholar
4.Grünbaum, B. (with the cooperation of Victor Klee, M.A. Perles and G. C. Shephard), Convex Polytopes. Interscience Publishers (Wiley and Sons), London-New York-Sydney (1967).Google Scholar
5.Grunbaum, B. and Barnette, D.. Preassigning the shape of a face. Pacific J. Math., 32 (1970), 299306. {MR 41-4377}.Google Scholar
6.Hertel, E.. Zerlegungen von Polygonen, Beitrcige Algebra Geom., 29 (1989), 219231. {MR 96k51034}.Google Scholar
7.Mahlo, P.. Topologische Untersuchungen tiber Zerlegung in ebene und spharische Polygone. Dissertation (Halle), 1908Google Scholar