Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T02:11:34.171Z Has data issue: false hasContentIssue false

The discrete fractional Fourier transform and Harper's equation

Published online by Cambridge University Press:  26 February 2010

Laurence Barker
Affiliation:
Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey. E-mail: [email protected]
Get access

Abstract

It is shown that the discrete fractional Fourier transform recovers the continuum fractional Fourier transform via a limiting process whereby inner products are preserved.

Type
Research Article
Copyright
Copyright © University College London 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Athanasiu, G. G. and Floratos, E. G.. Coherent states in infinite quantum mechanics. Nuclear Phys. B, 425 (1994), 343364.CrossRefGoogle Scholar
2.Athanasiu, G. G., Floratos, E. G. and Nicolis, S.. Holomorphic quantization on the torus and finite quantum mechanics. J. Phys. A, 29 (1996), 67376745.Google Scholar
3.Atakishiev, N. M. and Suslov, S. K.. Difference analogues of the harmonic oscillator. (English translation.) Teoreticheskaya i Mat. Fiz., 85 (1990), 6473.Google Scholar
4.Balian, R. and Itzykson, C.. Observations sur la mecanique quantique finie. C. R. Acad. Sc. Paris, Ser. I. 303 (1986), 773778.Google Scholar
5.Barker, L.. Phase space over an abelian group of odd order (preprint).Google Scholar
6.Barker, L.. Continuum quantum systems as limits of discrete quantum systems, I: state vectors. J. Functional Analysis 186 (2001), 153166.CrossRefGoogle Scholar
7.Barker, L., Candan, Ç., Hakioğlu, T., Kutay, A. and Özaktaş, H. M.. The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform. J. Phys. A: Math. Gen., 33 (2000), 22092222.CrossRefGoogle Scholar
8.Candan, Ç.. The Discrete Fractional Fourier Transform (Bilkent University M.S. thesis, July 1998, unpublished).Google Scholar
9.Candan, Ç., Kutay, M. A. and Özaktasş, H. M.. The discrete fractional Fourier transform. Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol III (IEEE, Pistcataway, New Jersey 1999), 17131716.Google Scholar
10.Hakioglu, T.. Linear canonical transformations and quantum phase: a unified canonical and algebraic approach. J. Phys. A: Math. Gen., 32 (1999), 41114130.CrossRefGoogle Scholar
11.McBride, A. C. and Kerr, F. H.. On Namias' fractional Fourier transform. IMA J. of Applied Math., 39 (1987), 159175.CrossRefGoogle Scholar
12.McClellen, J. H. and Parks, T. W.. Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust., AU-20 (1972), 6674.CrossRefGoogle Scholar
13.Namias, V.. The fractional order Fourier transform and its application to quantum mechanics. J. Insl. Math. Applies., 25 (1980), 241265.CrossRefGoogle Scholar
14.Özaktaş, H. M., Kutay, M. A. and Mendlovic, D.. Introduction to the fractional Fourier transform and its applications. In ed. Hawkes, P. W., Advances in Imaging and Electron Physics, Vol 106 (Academic Press, San Diego, California, 1998), 239291.Google Scholar
15.Özaktaş, H. M.. Mendlovic, D., Kutay, M. A. and Zalevsky, Z., The Fractional Fourier Transform: with Applications to Optics and Signal Processing (Wiley, New York, to appear).Google Scholar
16.Pei, S.-C. and Yeh, M.-H.. Improved discrete fractional Fourier transform. Optics Lett., 22 (1997), 10471049.CrossRefGoogle ScholarPubMed
17.Picard, R.. Hilbert Space Approach to Some Classical Transforms, Pitman Research Notes in Math., 196 (Longman, Harlow, U.K., 1989).Google Scholar
18.Rammal, R. and Bellisard, J.. An algebraic semi-classical approach to Bloch electrons in a magnetic field. J. Phys. France, 51 (1990), 18031830.CrossRefGoogle Scholar
19.Richman, M. S., Parks, T. W. and Shenoy, R. G.. Discrete-time, discrete-frequency, time frequency analysis. IEEE Trans. Signal Processing, 46 (1998), 15171527.CrossRefGoogle Scholar
20.Wilkinson, J. H.. The Algebraic Eigenvalue Problem, Oxford Univ. Press (1965).Google Scholar