Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T10:41:47.087Z Has data issue: false hasContentIssue false

Cubic forms over algebraic number fields

Published online by Cambridge University Press:  26 February 2010

D. J. Lewis
Affiliation:
University of Notre Dame, Notre Dame, Indiana, U.S.A.
Get access

Extract

It is our purpose here to show that, using results already in the literature, it is easy to prove the following and similar theorems.

For every positive integer d, there exists an integer Ψ (d) such that if K is an algebraic number field of degree d over the field of rational numbers then every cubic form f(x1 x2, …, xn) over K, with n ≥ Ψ(d), has a non-trivial zero in K.

Type
Research Article
Copyright
Copyright © University College London 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Brauer, Richard, “A note on systems of homogeneous algebraic equations”, Bull. American Math. Soc., 51 (1945), 749755.CrossRefGoogle Scholar
2.Hasse, H., “Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper”, Journal für die reine u. angew. Math., 153 (1924), 113130.CrossRefGoogle Scholar
3.Lewis, D. J., “Cubic congruences”, Michigan J. of Math., 4 (1957), 8595.CrossRefGoogle Scholar
4.Peck, L. G., “Diophantine equations in algebraic number fields”, American J. of Math., 71 (1949), 387402.CrossRefGoogle Scholar