Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T06:54:49.925Z Has data issue: false hasContentIssue false

Criteria for cubic and quartic residuacity

Published online by Cambridge University Press:  26 February 2010

Emma Lehmer
Affiliation:
942 Hilldale Avenue, Berkeley 8, Calif., U.S.A.
Get access

Extract

In a short and little known paper, Jacobi [1] gives conditions for the cubic residuacity of small primes q = 2, 3, ..., 37 to a prime p in terms of the quadratic partition

in the form L ≡ ±µM (mod q), and LM ≡ 0 (mod q).

Type
Research Article
Copyright
Copyright © University College London 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jacobi, K. G. J., “De residuis cubicis commentatio numerosa”, Jour, für die reine und angew. Math., 2 (1827), 6669.Google Scholar
2.Cunningham, A. J. C. and Gosset, T., “On 4-tio and 3-bic residuacity tables”, Mess. of Math., 50 (1920), 130.Google Scholar
3.Nagell, T., “Sur quelques problèmes dans la théorie des restes quadratiques et cubiques”, Arkiv för Mat., 3 (1956), 211222.CrossRefGoogle Scholar
4.Jacobsthal, Ernst, “Anwendungen einer Formel aus der Theorie der quadratischen Reste”, Dissertation (Berlin, 1906).Google Scholar
5.Landau, E., “Über die Verteilung der Primideale in den Idealklassen eines algebraisehen Zahlkörpers”, Math. Annalen, 63 (1906), 202.CrossRefGoogle Scholar
6.Kummer, E. E., Jour, für Math., 30 (1846), 107116.Google Scholar
7.Hasse, Helmut, Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraisehen Zahlkürper, Teil II, Reziprozitätsgesetze.Google Scholar
8.Lebesgue, H., “Recherehes sur les nombres”, Jour, de Math., 3 (1838), 113144.Google Scholar
9.Lehmer, Emma, “Period equations applied to difference sets”, Proc. American Math. Soc., 6 (1955), 433442.CrossRefGoogle Scholar
10.Mann, H. B., Introd. to algebraic number theory (Graduate School Studies, Math. Series 1, Ohio State University, 1955).Google Scholar