Article contents
Algebraic integral representations by arbitrary forms
Published online by Cambridge University Press: 26 February 2010
Extract
If(X1, …, Xn), n ≥ 3, is a non-singular quadratic form with rational integral coefficients whose greatest common divisor is 1, then G. L. Watson [1] showed that f(x1, …, xn) = 1, for suitable algebraic integers x1, …, xn. In the present paper we extend this result to forms of arbitrary degree, with algebraic integers as coefficients (see Theorem 3). In fact we prove the stronger result (Theorem 2) that, if f(X1, …, Xn) is any polynomial with relatively prime algebraic integers as coefficients, then f(x1, …, xn) is a unit, for suitable algebraic integers x1, …, xn. Unfortunately, our result is just an existence theorem. We cannot limit the size of the field which x1, …, xn generate, as Watson could.
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1963
References
- 12
- Cited by