Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T04:31:03.617Z Has data issue: false hasContentIssue false

On the fractional parts of the powers of a rational number (II)

Published online by Cambridge University Press:  26 February 2010

K. Mahler
Affiliation:
The University, Manchester 13.
Get access

Extract

About twenty years ago, in a note of the same title [2], I obtained the following result.

THEOREM 1. Let u and v be relatively prime integers satisfying u> v ≥ 2 and let ε be an arbitrarily small positive number. Suppose the inequality

is satisfied by an infinite sequence of positive integers n1 n2, … Then

Type
Research Article
Copyright
Copyright © University College London 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hardy, G. H. and Wright, E. M., Introduction to the Theory of Numbers (3rd ed., Oxford, 1954).Google Scholar
2.Mahler, K., Acta Arithmetical, 3 (1938), 8993.CrossRefGoogle Scholar
3.Mahler, K., Proc. K. Akad. Wet. Amsterdam, 39 (1936), 633640 and 729–737.Google Scholar
4.Ridout, D., Mathematika, 4 (1957), 125131.CrossRefGoogle Scholar
5.Roth, K. F., Mathematika, 2 (1955), 120.CrossRefGoogle Scholar
6.Schneider, Th., J. für die reine und angew. Math., 175 (1936), 182192.CrossRefGoogle Scholar
7.Schneider, Th., J. für die reine und angew. Math., 188 (1950), 115128.CrossRefGoogle Scholar