Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T12:36:24.084Z Has data issue: false hasContentIssue false

On Hua's estimates for exponential sums

Published online by Cambridge University Press:  26 February 2010

J. H. H. Chalk
Affiliation:
Department of Mathematics, University of Toronto, Toronto, Ont. M5S 1A1, Canada.
Get access

Extract

Let

and let p denote any prime. The p-content vp(f) of f is denned by

Type
Research Article
Copyright
Copyright © University College London 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Carlitz, L. and Uchiyama, S.. Bounds for Exponential Sums. Duke Math. Jour., 24 (1975), 3741.Google Scholar
2.Chalk, J. H. H.. On Incomplete Character Sums to a prime-power modulus. Canad. Math. Bull., 30 (3) (1987), 257266.CrossRefGoogle Scholar
3.Hua, Loo-Keng. “Additiv Primzahltheorie” (Teubner, Leipzig, 1959), Ch. 1, 27.Google Scholar
4.Hua, Loo-Keng. Die Abschätzung von Exponentialsummen und ihre Anwendung in der Zahlentheorie (1959) Enzyklopädie der Math. Wiss., Bd I2, H.13, TI section 13, S41.Google Scholar
5.Loxton, J. H. and Smith, R. A.. On Hua's Estimate for Exponential Sums. Jour. London Math. Soc., (2), 26 (1982), 1520.CrossRefGoogle Scholar
6.Loxton, J. H. and Vaughan, R. C.. The Estimation of Complete Exponential Sums. Canad. Math. Bull., 28 (1985), 440454.CrossRefGoogle Scholar
7.Weil, A.. On some exponential sums. Proc. Nat. Acad. Sci., U.S.A., 34 (1948), 204207.CrossRefGoogle ScholarPubMed