No CrossRef data available.
Published online by Cambridge University Press: 07 March 2019
Let $X:=\mathbb{A}_{R}^{n}$ be the $n$-dimensional affine space over a discrete valuation ring $R$ with fraction field $K$. We prove that any pointed torsor $Y$ over $\mathbb{A}_{K}^{n}$ under the action of an affine finite-type group scheme can be extended to a torsor over $\mathbb{A}_{R}^{n}$ possibly after pulling $Y$ back over an automorphism of $\mathbb{A}_{K}^{n}$. The proof is effective. Other cases, including $X=\unicode[STIX]{x1D6FC}_{p,R}$, are also discussed.