Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T06:04:30.107Z Has data issue: false hasContentIssue false

LOCAL MINIMALITY OF THE VOLUME-PRODUCT AT THE SIMPLEX

Published online by Cambridge University Press:  13 December 2010

Jaegil Kim
Affiliation:
Department of Mathematics, Kent State University, Kent, OH 44242, U.S.A. (email: [email protected])
Shlomo Reisner
Affiliation:
Department of Mathematics, University of Haifa, Haifa 31905, Israel (email: [email protected])
Get access

Abstract

It is proved that the simplex is a strict local minimum for the volume product, 𝒫(K)=min zint(K)|K||Kz|, in the Banach–Mazur space of n-dimensional (classes of) convex bodies. Linear local stability in the neighborhood of the simplex is proved as well. The proof consists of an extension to the non-symmetric setting of methods that were recently introduced by Nazarov, Petrov, Ryabogin and Zvavitch, as well as proving results of independent interest concerning stability of square order of volumes of polars of non-symmetric convex bodies.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Barthe, F. and Fradelizi, M., The volume product of convex bodies with many symmetries. Preprint, 2010.Google Scholar
[2]Böröczky, K. J. and Hug, D., Stability of the reverse Blaschke–Santaló inequality for zonoids and applications. Adv. Appl. Math. 44 (2010), 309328.CrossRefGoogle Scholar
[3]Böröczky, K. J., Makai, E., Meyer, M. and Reisner, S., Volume product in the plane—lower estimates with stability. Preprint, 2009.Google Scholar
[4]Bourgain, J. and Milman, V. D., New volume ratio properties for convex symmetric bodies in ℝn. Invent. Math. 88 (1987), 319340.CrossRefGoogle Scholar
[5]Gordon, Y., Meyer, M. and Reisner, S., Zonoids with minimal volume-product—a new proof. Proc. Amer. Math. Soc. 104 (1988), 273276.Google Scholar
[6]Klee, V., Facet-centroids and volume minimization. Studia Sci. Math. Hungar. 21 (1986), 143147.Google Scholar
[7]Kuperberg, G., From the Mahler conjecture to Gauss linking integrals. Geom. Funct. Anal. 18 (2008), 870892.CrossRefGoogle Scholar
[8]Mahler, K., Ein Minimalproblem für konvexe Polygone. Mathematica (Zutphen) B7 (1939), 118127.Google Scholar
[9]Mahler, K., Ein Überträgungsprinzip für konvexe Körper. Časopis Pěst. Mat. Fys. 68 (1939), 93102.CrossRefGoogle Scholar
[10]Meyer, M., Une caractérisation volumique de certains espaces normés. Israel J. Math. 55 (1986), 317326.CrossRefGoogle Scholar
[11]Meyer, M., Convex bodies with minimal volume product in ℝ2. Monatsh. Math. 112 (1991), 297301.CrossRefGoogle Scholar
[12]Meyer, M. and Pajor, A., On Santaló inequality. In Geometric Aspects of Functional Analysis (1987–88) (Lecture Notes in Mathematics, 1376), Springer (New York, 1989), 261263.CrossRefGoogle Scholar
[13]Meyer, M. and Reisner, S., Inequalities involving integrals of polar-conjugate concave functions. Monatsh. Math. 125 (1998), 219227.CrossRefGoogle Scholar
[14]Meyer, M. and Reisner, S., Shadow systems and volumes of polar convex bodies. Mathematika 53 (2006), 129148.CrossRefGoogle Scholar
[15]Meyer, M., Schütt, C. and Werner, E., A convex body whose centroid and Santaló point are far apart. Preprint, 2010.Google Scholar
[16]Meyer, M. and Werner, E., The Santaló-regions of a convex body. Trans. Amer. Math. Soc. 350 (1998), 45694591.CrossRefGoogle Scholar
[17]Nazarov, F., Petrov, F., Ryabogin, D. and Zvavitch, A., A remark on the Mahler conjecture: local minimality of the unit cube. Duke Math. J. 154 (2010), 419430.CrossRefGoogle Scholar
[18]Petty, C. M., Affine isoperimetric problems. Ann. New York Acad. Sci. 440 (1985), 113127.CrossRefGoogle Scholar
[19]Reisner, S., Zonoids with minimal volume-product. Math. Z. 192 (1986), 339346.CrossRefGoogle Scholar
[20]Reisner, S., Minimal volume product in Banach spaces with a 1-unconditional basis. J. Lond. Math. Soc. 36 (1987), 126136.CrossRefGoogle Scholar
[21]Saint Raymond, J., Sur le volume des corps convexes symétriques. Séminaire d’Initiation à l’Analyse, 1980–81, Université Paris VI, 1981.Google Scholar
[22]Santaló, L. A., Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Port. Math. 8 (1949), 155161.Google Scholar
[23]Schneider, R., Convex Bodies: The Brunn–Minkowski Theory (Encyclopedia Mathematics and its Applications 44), Cambridge University Press (Cambridge, 1993).CrossRefGoogle Scholar
[24]Tao, T., Structure and Randomness: Pages from Year One of a Mathematical Blog, American Mathematical Society (Providence, RI, 2008), 216219.CrossRefGoogle Scholar