Published online by Cambridge University Press: 26 February 2010
In [1] I made the following conjecture. If we tile a convex polygon of at most six sides with N convex tiles of areas a1, …,aN, then the total perimeter of the tiles is never less than the total perimeter of N regular hexagons of areas a1, …, aN. In order to show that the condition of the convexity of the tiles cannot be omitted I constructed a tiling with an equal number of “pentagons” and “heptagons” of perimeters and areas and , and ā5 and ā7, respectively. In a letter to me R. Schneider kindly pointed out that, in contrast to the value given in [1], the value of the quotient was equal to 3.7263… This being greater than √8√3 = 3–7224… the tiling given in [1] does not yield the desired counter-example. In what follows we shall construct a tiling for which the respective quotient will turn out to be less than √8√3.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.