Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T12:09:13.044Z Has data issue: false hasContentIssue false

A generalization of some lattices of Coxeter

Published online by Cambridge University Press:  26 February 2010

Anne-Marie Bergé
Affiliation:
Inst. Math., Université Bordeaux 1, 351, U. S. A., and cours de la Libération, 33405 Talence cedex, France, E-mail: [email protected]
Jacques Martinet
Affiliation:
Inst. Math., Université Bordeaux 1, 351, cours de la Libération, 33405 Talence cedex, France, E-mail: [email protected]
Get access

Abstract

This paper introduces a wide generalization of a family of integral lattices defined by Coxeter, which share with the Coxeter lattices the following properties: they are perfect, often with an odd minimum, and have no non-trivial perfect sections with the same minimum.

Type
Research Article
Copyright
Copyright © University College London 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Bc-V]Bacher, R. and Venkov, B.. Réseaux entiers unimodulaires sans racincs en dimension 27 et 28. In Réseaux Euclidiens, Designs Spheriques et Groupes (ed. Martinet, J.), L 'Ens. Math., Monographie 37, Genéve (2001), 212267.Google Scholar
[Bt-M]Batut, C. and Martinet, J.. A Catalogue of Perfect Lattices, http://www.math.ubordeaux. fr/~martinetGoogle Scholar
[Be]Berge, A.-M.. On certain Coxeter lattices without perfect sections. J. Algebntu Combinatorics 20 (2004), 516.CrossRefGoogle Scholar
[Cox]Coxeter, H. S. M.. Extreme forms. Canad. J. Math., 3 (1951). 391441.CrossRefGoogle Scholar
[PAR1]Cohen, H.Batut, C.Belabas, K.Bernardi, D. and Oliver, M.. User's Guide to PARI. http://www.parigp-home.deGoogle Scholar
[M]Martinet, J.. Perfect Lattices in Euclidean Spaces. Grundlehren 327, Springer-Verlag (Heidelberg, 2003).CrossRefGoogle Scholar
[M1]Martinet, J.. Sur l'indice d'un sous-réseau (with an appendix by C. Batut). In Reseaux Euclidiens, Designs Sphériques et Groupes (ed. Martinet, J.). L'Ens. Math.. Monographie 37, Genéve (2001), 163211.Google Scholar
[M-V]Martinet, J. and Venkov, B.. On integral lattices having an odd minimum. J. Algebra and Analysis (Saint-Petersburg) 16, 3 (2004), 198237.Google Scholar
[N-S]Nebe, G. and Sloane, N. J. A.. A Catalogue of Lattices, http://www.research.att.com~njas/lattices/index.htmlGoogle Scholar
[W]Watson, G. L.. On the minimum points of a positive quadratic form. Mathematika. 18 (1971), 6070.CrossRefGoogle Scholar