Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T10:35:20.163Z Has data issue: false hasContentIssue false

Ellipsoids defined by Banach ideal norms

Published online by Cambridge University Press:  26 February 2010

D. R. Lewis
Affiliation:
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210, U.S.A.
Get access

Abstract

A generalization and simplification of F. John's theorem on ellipsoids of minimum volume is proven. An application shows that for 1 ≤ p < 2, there is a subspace E of Lp and a λ > 1 such that 1E has no λ-unconditional decomposition in terms of rank one operators.

Type
Research Article
Copyright
Copyright © University College London 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Asplund, E.. “Comparison between plane symmetric convex bodies and parallelograms”, Math. Scand., 8 (1960), 171180.CrossRefGoogle Scholar
2.Bohnenblust, F.. “Subspaces of lpn spaces”, Amer. J. Math., 63 (1941), 6472.CrossRefGoogle Scholar
3.Bonsall, F. F. and Duncan, J.. Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras (Cambridge University Press, London-New York, 1971).CrossRefGoogle Scholar
4.Day, M. M.. “Polygons circumscribed about closed convex curves”, Trans. Amer. Math. Soc, 62 (1947), 315319.CrossRefGoogle Scholar
5.Diestel, J. and Uhl, J. J. Jr. “The Radon-Nikodym theorem for Banach valued measures”, Rocky Mountain J. Math., 6 (1976), 146.CrossRefGoogle Scholar
6.Dor, L. E.. “A note on monotone bases”, Israel J. Math., 14 (1973), 285286.CrossRefGoogle Scholar
7.Figiel, T., Johnson, W. B. and Tzafriri, L.. “On Banach lattices having local unconditional structure, with applications to Lorentz function spaces”, J. Approx. Theory, 13 (1965), 297412.Google Scholar
8.Garhng, D. J. H.. “Operators with large trace, and a characterization of ln”, Proc. Cambridge Philos. Soc, 76 (1974), 413414.Google Scholar
9.Gordon, Y.. “On p-absolutely summing constants of Banach spaces”, Israel 3. Math., 7 (1969), 151163.CrossRefGoogle Scholar
10.Grothendieck, A.. “Produits tensoriels topologiques et espaces nuclearies”, Memoirs Amer. Math. Soc, 16 (1955).Google Scholar
11.John, F.. “Extremum problems with inequalities as subsidiary conditions”, R. Courant Anniversary Volume (Interscience, New York 1948) 187204.Google Scholar
12.Lindenstrauss, J. and Pelczynski, A.. “Absolutely summing operators in Lp-spaces and their applications”, Studia Math., 29 (1968), 275326.CrossRefGoogle Scholar
13.Lindenstrauss, J. and Rosenthal, H. P.. “The Lp-spaces”, Israel J. Math., 7 (1969), 325349.Google Scholar
14.Milman, V. D. and Wolfson, H.. “Minkowski spaces with extreme distance from the Euclidean space”, Israel J. Math., 29 (1978), 113131.CrossRefGoogle Scholar
15.Persson, A. and Pietsch, A.. “p-nucleare und p-integrale Abbildungen in Banachraumen”, Studia Math., 33 (1967), 1962.CrossRefGoogle Scholar
16.Pietsch, A.. “Absolut p-summierende Abbildungen in normierten Raiiman”, Studia Math., 28 (1967), 333353.CrossRefGoogle Scholar
17.Pietsch, A.. “Adjungierte normierten operatorenideale”, Math. Nach., 48 (1971), 189211.CrossRefGoogle Scholar
18.Pietsch, A.. Theorie der Operatorenideale, (Friedrich Schiller University, Jena, 1972).Google Scholar
19.Pisier, G.. “Some results on Banach spaces without local unconditional structure”, to appear.Google Scholar
20.Singer, I.. Bases in Banach Spaces I (Springer-Verlag, Berlin-Heidelberg-New York, 1970).CrossRefGoogle Scholar
21.Taylor, A. E.. “A geometric theorem and its application to biorthogonal systems”, Bull Amer. Math. Soc, 53 (1947), 614616.CrossRefGoogle Scholar