Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T12:50:14.095Z Has data issue: false hasContentIssue false

An approximation property of certain nonlinear Volterra integral operators

Published online by Cambridge University Press:  26 February 2010

Hermann Brunner
Affiliation:
Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada.
Get access

Extract

Let T be a nonlinear Volterra integral operator of the form

(with I compact, a < b), whose kernel K = K(x, t, u) satisfies the following conditions:

with

Type
Research Article
Copyright
Copyright © University College London 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barrar, R. B. and Loeb, H. L.. “On the continuity of the nonlinear Tschebyscheff operator”, Pacific J. Math., 32 (1970), 593601.CrossRefGoogle Scholar
2.Brunner, H.. “On the approximate solution of first-kind integral equations of Volterra type”, Computing (Arch. Elektron. Rechneri), 13 (1974), 6779.Google Scholar
3.Collatz, L. and Krabs, W.. “Approximationstheorie (B. G. Teubner, Stuttgart, 1973).CrossRefGoogle Scholar
4.Dunham, C. B.. “Existence and continuity of the Chebyshev operator”, SIAM Review, 10 (1968), 444446.CrossRefGoogle Scholar
5.Dunham, C. B.. “Chebyshev approximation with a null point”, Z. Angew. Math. Mech., 52 (1972), 239.CrossRefGoogle Scholar
6.Dunham, C. B.. “Families satisfying the Haar condition”, J. Approx. Theory, 12 (1974), 291298.CrossRefGoogle Scholar
7.Gantmacher, F. R. and Krein, M. G.. Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme (Akademie-Verlag, Berlin, 1960).Google Scholar
8.Janikowski, J.. “Equation integrate non lineaire d'Abel”, Bull. Soc. Sci. Lettres Lódz, 13 (1962), No. 11.Google Scholar
9.Kaufman, E. H. and Belford, G. G.. “Transformation of families of approximating functions”, J. Approx. Theory, 4 (1971), 363371.CrossRefGoogle Scholar