Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T18:50:54.883Z Has data issue: false hasContentIssue false

Yoneda completeness

Published online by Cambridge University Press:  28 February 2017

TRISTAN BICE*
Affiliation:
Instytut Matematyczny Polskiej Akademii Nauk, Warszawa, Poland Email: [email protected]

Abstract

We characterize Yoneda completeness for non-symmetric distances by combinations of metric and directed completeness. One of these generalizes the Kostanek–Waszkiewicz theorem on formal balls.

Type
Paper
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akemann, C.A. and Pedersen, G.K. (1973). Complications of semicontinuity in C*-algebra theory. Duke Mathematical Journal 40 (4) 785795.Google Scholar
Bice, T. (2016). Semicontinuity in ordered Banach spaces. arXiv:1604.03154v1 [math.FA].Google Scholar
Bonsangue, M., van, Breugel, F. and Rutten, J. (1998). Generalized metric spaces: Completion, topology, and powerdomains via the Yoneda embedding. Theoretical Computer Science 193 (12) 151.CrossRefGoogle Scholar
Brown, L.G. (1988). Semicontinuity and multipliers of C*-algebras. Canadian Journal of Mathematics 40 (4) 865988.Google Scholar
Goubault-Larrecq, J. (2013). Non-Hausdorff Topology and Domain Theory, New Mathematical Monographs, vol. 22, Cambridge University Press, Cambridge. [On the cover: Selected topics in point-set topology].Google Scholar
Kostanek, M. and Waszkiewicz, P. (2011). The formal ball model for $\TBmathcal{Q}$ -categories. Mathematical Structures in Computer Science 21 (1) 4164.Google Scholar
Künzi, H.P. and Schellekens, M.P. (2002). On the Yoneda completion of a quasi-metric space. Theoretical Computer Science 278 (1–2) 159194. Mathematical foundations of programming semantics (Boulder, CO, 1996).Google Scholar
Pedersen, G.K. (1979). C*-Algebras and Their Automorphism Groups, London Mathematical Society Monographs, vol. 14, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London.Google Scholar
Smyth, M.B. (1988). Quasi-uniformities: Reconciling domains with metric spaces. In: Main, M., Melton, A., Mislove, M. and Schmidt, D. (eds.) Mathematical Foundations of Programming Language Semantics (New Orleans, LA, 1987), Lecture Notes in Computer Science, vol. 298, Springer, Berlin, 236253.Google Scholar
Wagner, K.R. (1997). Liminf convergence in Ω-categories. Theoretical Computer Science 184 (1–2) 61104.Google Scholar