Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T06:58:12.606Z Has data issue: false hasContentIssue false

A short proof of the Schröder–Simpson Theorem

Published online by Cambridge University Press:  02 December 2014

JEAN GOUBAULT-LARRECQ*
Affiliation:
ENS Cachan, 61, Avenue du Président-Wilson, 94230 Cachan, France Email: [email protected]

Abstract

We give a short and elementary proof of the Schröder–Simpson Theorem, which states that the space of all continuous maps from a given space X to the non-negative reals with their Scott topology is the cone-theoretic dual of the probabilistic powerdomain on X.

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Heckmann, R. (1996) Spaces of valuations. In: Andima, S., Flagg, R. C., Itzkowitz, G., Kong, Y., Kopperman, R. and Misra, P. (eds.) Papers on General Topology and Applications: 11th Summer Conference at the University of Southern Maine. Annals of the New York Academy of Sciences 806 174200.CrossRefGoogle Scholar
Keimel, K. (2006) Topological cones: Foundations for a domain-theoretical semantics combining probability and nondeterminism. Electronic Notes in Theoretical Computer Science 155 423443.CrossRefGoogle Scholar
Keimel, K. (2012) Locally convex cones and the Schröder–Simpson theorem. Questiones Mathematicae 35 353390.Google Scholar
Kirch, O. (1993) Bereiche und Bewertungen. Master's thesis, TH Darmstadt.Google Scholar
Roth, W. (2000) Hahn–Banach type theorems for locally convex cones. Journal of the Australian Mathematical Society 68 (1)104125.Google Scholar
Schröder, M. and Simpson, A. (2005) Probabilistic observations and valuations. Talk at Mathematical Foundations of Programming Semantics XXI, Birmingham. (Slides available at http://homepages.inf.ed.ac.uk/als/Talks/mfps05.pdf.)Google Scholar
Tix, R. (1995) Stetige Bewertungen auf topologischen Räumen, Diplomarbeit, TH Darmstadt.Google Scholar