Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T06:39:52.700Z Has data issue: false hasContentIssue false

The semantics of BI and resource tableaux

Published online by Cambridge University Press:  08 December 2005

D. GALMICHE
Affiliation:
LORIA UMR 7503 – Université Henri Poincaré Nancy 1, Campus Scientifique, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France. Email: [email protected], [email protected]
D. MÉRY
Affiliation:
LORIA UMR 7503 – Université Henri Poincaré Nancy 1, Campus Scientifique, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France. Email: [email protected], [email protected]
D. PYM
Affiliation:
Department of Computer Science, University of Bath, Claverton Down, Bath BA2 7AY, England, U.K. Email: [email protected]

Abstract

The logic of bunched implications, BI, provides a logical analysis of a basic notion of resource that is rich enough, for example, to form the logical basis for ‘pointer logic’ and ‘separation logic’ semantics for programs that manipulate mutable data structures. We develop a theory of semantic tableaux for BI, so providing an elegant basis for efficient theorem proving tools for BI. It is based on the use of an algebra of labels for BI's tableaux to solve the resource-distribution problem, the labels being the elements of resource models. For BI with inconsistency, $\bot$, the challenge consists in dealing with BI's Grothendieck topological models within such a proof-search method, based on labels. We prove soundness and completeness theorems for a resource tableaux method TBI with respect to this semantics and provide a way to build countermodels from so-called dependency graphs. Then, from these results, we can define a new resource semantics of BI, based on partially defined monoids, and prove that this semantics is complete. Such a semantics, based on partiality, is closely related to the semantics of BI's (intuitionistic) pointer and separation logics. Returning to the tableaux calculus, we propose a new version with liberalised rules for which the countermodels are closely related to the topological Kripke semantics of BI. As consequences of the relationships between semantics of BI and resource tableaux, we prove two new strong results for propositional BI: its decidability and the finite model property with respect to topological semantics.

Type
Paper
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)