Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T06:49:46.293Z Has data issue: false hasContentIssue false

Quasivarieties and varieties of ordered algebras: regularity and exactness

Published online by Cambridge University Press:  18 January 2016

ALEXANDER KURZ
Affiliation:
Department of Computer Science, University of Leicester, Leicester, U.K. Email: [email protected]
JIŘÍ VELEBIL
Affiliation:
Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterise quasivarieties and varieties of ordered algebras categorically in terms of regularity, exactness and the existence of a suitable generator. The notions of regularity and exactness need to be understood in the sense of category theory enriched over posets. We also prove that finitary varieties of ordered algebras are cocompletions of their theories under sifted colimits (again, in the enriched sense).

Type
Paper
Copyright
Copyright © Cambridge University Press 2016 

Footnotes

The author (J. Velebil) acknowledges the support of the grant No. P202/11/1632 of the Czech Science Foundation.

References

Adámek, J., Koubek, V. and Velebil, J. (2000). A duality between infinitary varieties and algebraic theories. Commentationes Mathematicae Universitatis Carolinae 41 (3) 529541.Google Scholar
Adámek, J. and Rosický, J. (1994). Locally Presentable and Accessible Categories, Cambridge University Press.CrossRefGoogle Scholar
Adámek, J. and Rosický, J. (2001). On sifted colimits and generalized varieties. Theory Applications of Categories 8 3353.Google Scholar
Adámek, J., Rosický, J. and Vitale, E. (2011). Algebraic Theories, Cambridge Tracts in Mathematics volume 184, Cambridge University Press, Cambridge.Google Scholar
Albert, M. H. and Kelly, G. M. (1988). The closure of a class of colimits. Journal of Pure and Applied Algebra 51 117.CrossRefGoogle Scholar
Barr, M., Grillet, P. A. and van Osdol, D. H. (1971). Exact Categories and Categories of Sheaves, LNM volume 236, Springer.CrossRefGoogle Scholar
Bird, G. J. (1984). Limits in 2-Categories of Locally-Presented Categories, Ph.D. thesis, The University of Sydney.Google Scholar
Bloom, S. L. (1976). Varieties of ordered algebras. Journal of Computer and System Sciences 13 (2) 200212.CrossRefGoogle Scholar
Bloom, S. L. and Wright, J. B. (1983). P-varieties — A signature independent characterization of varieties of ordered algebras. Journal of Pure and Applied Algebra 29 1358.CrossRefGoogle Scholar
Bourke, J. (August 2010). Codescent Objects in 2-Dimensional Universal Algebra, Ph.D. thesis, University of Sydney.Google Scholar
Bourke, J. and Garner, R. (2014). Two-dimensional regularity and exactness. Journal of Pure and Applied Algebra 218 (7) 13461371.CrossRefGoogle Scholar
Cohn, P. (1981). Universal Algebra, Springer.CrossRefGoogle Scholar
Duskin, J. (1969). Variations on Beck's Tripleability Criterion, LNM volume 106, Springer-Verlag 74129.Google Scholar
El Bashir, R. and Velebil, J. (2002). Simultaneously reflective and coreflective subcategories of presheaves. Theory Applications of Categories 10 410423.Google Scholar
Gabriel, P. and Ulmer, F. (1971). Lokal präsentierbare Kategorien, Lecture Notes in Mathematics volume 221, Springer.CrossRefGoogle Scholar
Goguen, J., Thatcher, J., Wagner, E. and Wright, J. (1977). Initial algebra semantics and continuous algebras. Journal of the ACM 24 (1) 6895.CrossRefGoogle Scholar
Hyland, M. and Power, J. (2006). Discrete Lawvere theories and computational effects. Theoretical Computer Science 366 144162.CrossRefGoogle Scholar
Isbell, J. (1964). Subobjects, adequacy, completeness and categories of algebras. Rozprawy Math. XXXVI 133.Google Scholar
Kelly, G. M. (1982). Structures defined by finite limits in the enriched context I. Cahiers de Géometrie Differentielle XXIII.1 342.Google Scholar
Kelly, G. M. (1989). Elementary observations on 2-categorical limits. Bulletin of the Australian Mathematical Society 39 301317.CrossRefGoogle Scholar
Kelly, G. M. (2005). Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series volume 64, Cambridge University Press, 1982, also available as Repr. Theory Appl. Categ. 10.Google Scholar
Kelly, G. M. and Lack, S. (1993). Finite product-preserving-functors, Kan extensions and strongly-finitary 2-monads. Applied Categorical Structures 1 8594.CrossRefGoogle Scholar
Kelly, G. M. and Power, A. J. (1993). Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads. Journal of Pure and Applied Algebra 89 163179.CrossRefGoogle Scholar
Kelly, G. M. and Schmitt, V. (2005). Notes on enriched categories with colimits of some class. Theory and Applications of Categories 14 (17) 399423.Google Scholar
Kozen, D. (1994). A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation 110 (2) 366390.CrossRefGoogle Scholar
Kurz, A. and Velebil, J. (2013). Enriched logical connections. Applied Categorical Structures 21 (4) 349377.CrossRefGoogle Scholar
Lack, S. (2002) Codescent objects and coherence. Journal of Pure and Applied Algebra 175 223241.CrossRefGoogle Scholar
Lack, S. and Rosický, J. (2011). Notions of Lawvere theory. Applied Categorical Structures 19 (1) 363391.CrossRefGoogle Scholar
Lair, C. (1996). Sur le genre d'esquissabilité des catégories modelables (accessibles) possédant les produits de deux. Diagrammes 35 2552.Google Scholar
Lawvere, F. W. (2004). Functorial Semantics of Algebraic Theories , Ph.D. thesis, Columbia University 1963, available as Repr. Theory Appl. Categ. 5 1121.Google Scholar
Linton, F. E. J. (1966). Some aspects of equational categories. In: Proc. Conf. Categ. Alg. La Jolla 1965, Springer 8494.Google Scholar
Mac Lane, S. (1971). Categories for the Working Mathematician, Springer.CrossRefGoogle Scholar
Métayer, F. State monads and their algebras. arXiv:math.CT/0407251v1.Google Scholar
Pin, J.-E. (1997). Syntactic semigroups. Chap. 10 In: Handbook of Language Theory, volume I, Springer-Verlag 679746.Google Scholar
Raftery, J. (2013). Order algebraizable logics. Annals of Pure and Applied Logic 164 251283.CrossRefGoogle Scholar
Scott, D. (1971). The Lattice of Flow Diagrams LNM volume 188, Springer-Verlag 311366.Google Scholar
Street, R. (1974). Fibrations and Yoneda's Lemma in a 2-Category, Lecture Notes in Mathematics volume 420, Springer 104133.Google Scholar
Street, R. (1982). Two-dimensional sheaf theory. Journal of Pure and Applied Algebra 24 251270.CrossRefGoogle Scholar
Street, R. and Walters, R. F. C. (1978). Yoneda structures on 2-categories. Journal of Algebra 50 350379.CrossRefGoogle Scholar
Vitale, E. (1994). On the characterization of monadic categories over set. Cahiers de Topologie et Géometrie Differentielle XXXV.4 351358.Google Scholar