Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T07:45:57.127Z Has data issue: false hasContentIssue false

A Gray code for cross-bifix-free sets

Published online by Cambridge University Press:  11 May 2015

ANTONIO BERNINI
Affiliation:
Dipartimento di Matematica e Informatica ‘U. Dini,’ Università degli Studi di Firenze, Viale G.B. Morgagni 65, 50134 Florence, Italy Email: [email protected], [email protected], [email protected]
STEFANO BILOTTA
Affiliation:
Dipartimento di Matematica e Informatica ‘U. Dini,’ Università degli Studi di Firenze, Viale G.B. Morgagni 65, 50134 Florence, Italy Email: [email protected], [email protected], [email protected]
RENZO PINZANI
Affiliation:
Dipartimento di Matematica e Informatica ‘U. Dini,’ Università degli Studi di Firenze, Viale G.B. Morgagni 65, 50134 Florence, Italy Email: [email protected], [email protected], [email protected]
VINCENT VAJNOVSZKI
Affiliation:
LE2I, Université de Bourgogne, BP 47 870, 21078 Dijon Cedex, France Email: [email protected]

Abstract

A cross-bifix-free set of words is a set in which no prefix of any length of any word is the suffix of any other word in the set. A construction of cross-bifix-free sets has recently been proposed in Chee et al. (2013) within a constant factor of optimality. We propose a Gray code for these cross-bifix-free sets and a CAT algorithm generating it. Our Gray code list is trace partitioned, that is, words with zero in the same positions are consecutive in the list.

Type
Paper
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bajic, D. (2007). On construction of cross-bifix-free kernel sets. In: 2nd MCM COST 2100, TD(07)237, Lisbon, Portugal.Google Scholar
Baril, J. and Vajnovszki, V. (2004). Gray code for derangements. Discrete Applied Mathematics 140 207221.CrossRefGoogle Scholar
Berstel, J., Perrin, D. and Reutenauer, C. (2009). Codes and Automata, Encyclopedia of Mathematics and its Applications, Cambridge University Press.CrossRefGoogle Scholar
Bernini, A., Bilotta, S., Pinzani, R., Sabri, A. and Vajnovszki, V. (2014). Prefix partitioned Gray codes for particular cross-bifix-free sets. Cryptography and Communications 6 (4) 359369.Google Scholar
Bilotta, S., Pergola, E. and Pinzani, R. (2012). A new approach to cross-bifix-free sets. IEEE Transactions on Information Theory 58 40584063.Google Scholar
Bitner, J. R., Ehrlich, G. and Reingold, E. M. (1976). Efficient generation of the binary reflected Gray code and its applications. Communications of the ACM 19 (9) 517521.CrossRefGoogle Scholar
Chang, C. C., Chen, H. Y. and Chen, C. Y. (1992). Symbolic Gray code as a data allocation scheme for two-disc systems. Computing Journal 35 99305.CrossRefGoogle Scholar
Chee, Y. M., Kiah, H. M., Purkayastha, P. and Wang, C. (2013). Cross-bifix-free codes within a constant factor of optimality. IEEE Transactions on Information Theory 59 46684674.CrossRefGoogle Scholar
Crochemore, M., Hancart, C. and Lecroq, T. (2007). Algorithms on Strings, Cambridge University Press, Cambridge.Google Scholar
de Lind van Wijngaarden, A. J. and Willink, T. J. (2000). Frame synchronization using distributed sequences. IEEE Transactions on Commununications 48 21272138.Google Scholar
Er, M. C. (1984). On generating the N-ary reflected Gray code. IEEE Transaction on Computer 33 739741.Google Scholar
Flajolet, P. and Ramshaw, L. (1980). A note on Gray code and odd-even merge. SIAM Journal on Computing 9 (1) 142158.Google Scholar
Gardner, M. (1972). Mathematical games: The curious properties of the Gray code and how it can be used to solve puzzles. Scientific American 227 (2) 106109.Google Scholar
Gray, F. (1953). Pulse Code Communication. U.S. Patent 2 632 058.Google Scholar
Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System Technical Journal 29 147160.Google Scholar
Johnson, S. M. (1963). Generation of permutations by adjacent transpositions. Mathematics of Computation 17 282285.Google Scholar
Kobayashi, Z. and Sekiguchi, T. (1981). Gray codes generation for MPSK signals. IEEE Transactions on Communications 29 15191522.Google Scholar
Losee, R. M. (1992). A Gray code based ordering for documents on shelves. Journal of the Association for Information Science 43 312322.Google Scholar
Richards, D. (1986). Data compression and Gray-code sorting. Information Processing Letters 22 (4) 201205.CrossRefGoogle Scholar
Ruskey, F. (1993). Simple combinatorial Gray codes constructed by reversing sublist. Lecture Notes in Computer Science 762 201208.Google Scholar
Ruskey, F. Combinatorial generation, Book in preparation.Google Scholar
Sagan, B. E. (2010). Pattern avoidance in set partitions. Ars Combinatoria 94 7996.Google Scholar
Tsuiki, H. (1998). Gray code representation of exact real numbers. In: Proceedings of the 3rd Workshop on Computability and Complexity in Analysis.Google Scholar
Vajnovszki, V. (2001a). A loopless generation of bitstrings without p consecutive ones. Discrete Mathematics and Theoretical Computer Science-Springer, 227–240.Google Scholar
Vajnovszki, V. (2001b). Gray visiting Motzkin. Acta Informatica 38 793811.Google Scholar
Walsh, T. (2001). Gray codes for involutions. Journal of Combinatorial Mathematics and Combinatorial Computing 36 95118.Google Scholar
Walsh, T. (2003). Generating Gray codes in O(1) worst-case time per word. Lecture Notes in Computer Science 2731 7388.Google Scholar
Williamson, S. G. (1985). Combinatorics for Computer Science, Computer Science Press, Rockville, Maryland.Google Scholar