Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T03:40:37.977Z Has data issue: false hasContentIssue false

Girard quantaloids

Published online by Cambridge University Press:  04 March 2009

Kimmo I. Rosenthal
Affiliation:
Department of Mathematics, Union College, Schenectady, NY 12308, USA

Abstract

The partially ordered models of linear logic, a logical system developed by J. Y. Girard, turn out to be a class of quantales called Girard quantales. The notion of a quantaloid is a natural categorical generalization of a quantale and is one possible way of keeping track of types. In this paper, Girard quantales are generalized to Girard quantaloids. The general theory is developed and several key examples are studied. Turning our attention to the theory of categories enriched in a bicategory, it is then shown that if G is a Girard quantaloid, then the quantaloids Bim(G), Matr(G), and Mon(G), consisting of G-bimodules, G-matrices and G-monads respectively, are also Girard quantaloids.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, S. and Vickers, S. (1990) Quantales, observational logic, and process semantics. Imperial College Research Report No. DC 90/1.Google Scholar
Barr, M. (1979) *-Autonomous Categories, Springer Lecture Notes in Mathematics 752.CrossRefGoogle Scholar
Betti, R., Carboni, A., Street, R. and Walters, R. F. C. (1983) Variation through enrichment. J. Pure App. Alg. 29 109127.CrossRefGoogle Scholar
Carboni, A. and Street, R. (1986) Order ideals in categories. Pac. J. Math. 124 (2) 275288.CrossRefGoogle Scholar
Carboni, A., Kasangian, S. and Walters, R. F. C. (1987) An axiomatics for bicategories of modules. J. Pure Appl. Alg. 45 127141.CrossRefGoogle Scholar
Carboni, , and Walters, R. F. C. (1987) Cartesian bicategories I. J. Pure Appl Alg. 45 127141.CrossRefGoogle Scholar
Freyd, P. and Scedrov, A. (1990) Categories, Allegories. North-Holland.Google Scholar
Girard, J. Y. (1987) Linear logic. Theor. Comp. Sci. 50 1102.CrossRefGoogle Scholar
Girard, J. Y. (1989) Towards a geometry of interaction. In: Categories in Comp. Sci. and Logic, Cont. Math. 92, Amer. Math. Soc. pp. 69108.CrossRefGoogle Scholar
Johnstone, P. T. (1982) Stone Spaces. Cambridge University Press.Google Scholar
Kelly, G. M. (1982) Basic Concepts of Enriched Category Theory. Cambridge University Press.Google Scholar
Kasangian, S. and Rosebrugh, R. (1986) Decompositions of automata and enriched category theory. Cah. de Top. et Géom. Diff. Cat. XXVII (4) 137143.Google Scholar
Lambek, J. and Scott, P. (1986) Introduction to Higher Order Categorical Logic. Cambridge University Press.Google Scholar
Lawvere, F. W. (1969) Adjointness in foundations. Dialectica 23 281296.CrossRefGoogle Scholar
Lawvere, F. W. (1970) Equality in hyperdoctrines and comprehension scheme as adjoint functors. In: Cat. Alg. and its Appl., (ed. Heller, A.), Proc. NY Symp., Amer. Math. Soc. 114.Google Scholar
Lawvere, F. W. (1973) Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. e Fis. Milano 135166.CrossRefGoogle Scholar
Pin, J. E. (1986) Varieties of Formal Languages. Plenum Press.CrossRefGoogle Scholar
Pitts, A. (1988) Applications of sup-lattice enriched category theory to sheaf theory. Proc. London Math. Soc. 57 (3) 433480.CrossRefGoogle Scholar
Pitts, A. (1989) Notes on categorical logic, manuscript. Cambridge University Computer Laboratory.Google Scholar
Niefield, S. B. and Rosenthal, K. I. (1988) Constructing locales from quantales. Math. Proc. Camb. Phil. Soc. 104 215234.CrossRefGoogle Scholar
Rosenthal, K. I. (1990a) Quantales and their Applications. Pitman Research Notes in Math. 234, Longman, Scientific, and Technical.Google Scholar
Rosenthal, K. I. (1990b) A note on Girard quantales. Cah. de Top. et Géom. Diff. Cat. XXXI (1) 312.Google Scholar
Rosenthal, K. I. (1991) Free quantaloids. J. Pure Appl Alg. 72 6782.CrossRefGoogle Scholar
Seely, R. (1989) Linear logic, *-autonomous categories, and cofree coalgebras. In: Categories in Computer Science and Logic. Cont. Math. 92, Amer. Math. Soc. pp 371382.CrossRefGoogle Scholar
Vickers, S. (1989) Topology via Logic. Camb. Tracts Theor. Comp. Sci. 5, Cambridge University Press.Google Scholar
Yetter, D. (1990) Quantales and (non-commutative) linear logic. J. Symb. Logic 55 (1) 4164.CrossRefGoogle Scholar