No CrossRef data available.
Article contents
The geometry of Bayesian programming
Published online by Cambridge University Press: 07 December 2021
Abstract
We give two geometry of interaction models for a typed λ-calculus with recursion endowed with operators for sampling from a continuous uniform distribution and soft conditioning, namely a paradigmatic calculus for higher-order Bayesian programming. The models are based on the category of measurable spaces and partial measurable functions, and the category of measurable spaces and s-finite kernels, respectively. The former is proved adequate with respect to both a distribution-based and a sampling-based operational semantics, while the latter is proved adequate with respect to a sampling-based operational semantics.
- Type
- Paper
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press