Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T08:56:45.158Z Has data issue: false hasContentIssue false

Exponentiable morphisms of domains

Published online by Cambridge University Press:  01 October 2008

F. CAGLIARI
Affiliation:
Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, I-40127 Bologna, Italy Email: [email protected]
S. MANTOVANI
Affiliation:
Dipartimento di Matematica, Università di Milano, Via Saldini 50, I-20133 Milano, Italy Email: [email protected]

Abstract

Given a map f in the category ω-Cpo of ω-complete posets, exponentiability of f in ω-Cpo easily implies exponentiability of f in the category Pos of posets, while the converse is not true. We investigate the extra conditions needed on f exponentiable in Pos to be exponentiable in ω-Cpo by showing the existence of partial products of the two-point ordered set S={0<1} (Theorem 2.8). Using this characterisation and the embedding through the Scott topology of ω-Cpo in the category Top of topological spaces, we compare exponentiability in each setting and find that a morphism in ω-Cpo that is exponentiable in both Top and Pos is exponentiable in ω-Cpo also. Furthermore, we show that the exponentiability in Top and Pos are independent of each other.

Type
Paper
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramsky, S. and Jung, A. (1994) Domain theory. Handbook of logic in computer science 3, Oxford University Press 1168.Google Scholar
Adámek, J., Herrlich, H. and Strecker, G. (1990) Abstract and Concrete Categories, Wiley.Google Scholar
Clementino, M. M., Hofmann, D. and Tholen, W. (2003) The convergence approach to exponentiable maps. Port. Math. (N.S.) 60 (2)139160.Google Scholar
Cagliari, F. and Mantovani, S. (2007) Exponentiable monomorphisms in categories of domains. J. Pure Appl. Algebra 211 (2)404413CrossRefGoogle Scholar
Dyckhoff, R. and Tholen, W. (1987) Exponentiable morphisms, partial products and pullback complements. J. Pure Appl. Algebra 49 103106.CrossRefGoogle Scholar
Fiech, A. (1996) Colimits in the category DCPO. Mathematical Structures in Computer Science 6 (5)455468.CrossRefGoogle Scholar
Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. and Scott, D. S. (2003) Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, Cambridge University Press.Google Scholar
Giraud, J. (1964) Methode de la descente. Bull. Soc. Math. France, Memoire 2.Google Scholar
Markowsky, G. (1976) Chain-complete posets and directed sets with applications. Algebra Universalis 6 (1)5368.CrossRefGoogle Scholar
Markowsky, G. and Rosen, B. K. (1976) Bases for chain-complete posets. IBM J. Res. Develop. 20 (2)138147.CrossRefGoogle Scholar
Niefield, S. (1982) Cartesianness: topological spaces, uniform spaces and affine schemes. J. Pure and Appl. Algebra 23 147167.CrossRefGoogle Scholar
Niefield, S. (2001) Exponentiable morphisms: posets, spaces, locales, and Grothendieck toposes. Theory and Applications of Categories 8 1632.Google Scholar
Richter, G. (2002) Exponentiable maps and triquotients in Top. J. Pure Appl. Algebra 168 99105.CrossRefGoogle Scholar
Scott, D. S. (1972) Continuous lattices. Springer-Verlag Lecture Notes in Mathematics 274 97137.CrossRefGoogle Scholar
Taylor, P. (2002) Subspaces In Abstract Stone Duality. Theory and Applications of Categories 10 (13)301368.Google Scholar
Tholen, W. (2000) Injectives, exponentials, and model categories. In: Abstracts of the Int. Conf. on Category Theory (Como, Italy, 2000) 183–190.Google Scholar