Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T18:49:50.382Z Has data issue: false hasContentIssue false

An expressiveness study of priority in process calculi

Published online by Cambridge University Press:  04 December 2009

CRISTIAN VERSARI
Affiliation:
Università di Bologna, Dipartimento di Scienze dell'Informazione, Mura Anteo Zamboni 7, 40127 Bologna, Italy Email: [email protected], [email protected]
NADIA BUSI
Affiliation:
Università di Bologna, Dipartimento di Scienze dell'Informazione, Mura Anteo Zamboni 7, 40127 Bologna, Italy Email: [email protected], [email protected]
ROBERTO GORRIERI
Affiliation:
Università di Bologna, Dipartimento di Scienze dell'Informazione, Mura Anteo Zamboni 7, 40127 Bologna, Italy Email: [email protected], [email protected]

Abstract

Priority is a frequently used feature of many computational systems. In this paper we study the expressiveness of two process algebras enriched with different priority mechanisms. In particular, we consider a finite (that is, recursion-free) fragment of asynchronous CCS with global priority (FAP, for short) and Phillips' CPG (CCS with local priority), and contrast their expressive power with that of two non-prioritised calculi, namely the π-calculus and its broadcast-based version, called bπ. We prove, by means of leader-election-based separation results, that, under certain conditions, there exists no encoding of FAP in π-Calculus or CPG. Moreover, we single out another problem in distributed computing, which we call the last man standing problem (LMS for short), that better reveals the gap between the two prioritised calculi above and the two non-prioritised ones, by proving that there exists no parallel-preserving encoding of the prioritised calculi in the non-prioritised calculi retaining any sincere (complete but partially correct, that is, admitting divergence or premature termination) semantics.

Type
Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baeten, J., Bergstra, J. and Klop, J. (1986) Syntax and defining equations for an interrupt mechanism in process algebra. Fundamenta Informaticae IX (2)127168.CrossRefGoogle Scholar
Baeten, J. C. M., Bergstra, J. A. and Klop, J. W. (1987) Ready-trace semantics for concrete process algebra with the priority operator. Comput. J. 30 (6)498506.CrossRefGoogle Scholar
Bernardo, M. and Gorrieri, R. (1996) Extended Markovian process algebra. In: Montanari, U. and Sassone, V. (eds) CONCUR. Springer-Verlag Lecture Notes in Computer Science 1119 315330.CrossRefGoogle Scholar
Bernardo, M. and Gorrieri, R. (1998) A tutorial on empa: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theor. Comput. Sci. 202 (1–2)154.CrossRefGoogle Scholar
Boudol, G. (1992) Asynchrony and the π-Calculus. Technical Report 1702, Department of Computer Science, INRIA Sophia-Antipolis.Google Scholar
Bougé, L. (1988) On the existence of symmetric algorithms to find leaders in networks of communicating sequential processes. Acta Inf. 25 (2)179201.CrossRefGoogle Scholar
Bravetti, M. and Gorrieri, R. (2002) The theory of interactive generalized semi-Markov processes. Theor. Comput. Sci. 282 (1)532.CrossRefGoogle Scholar
Bravetti, M., Gorrieri, R., Lucchi, R. and Zavattaro, G. (2005) Quantitative information in the tuple space coordination model. Theor. Comput. Sci. 346 (1)2857.CrossRefGoogle Scholar
Camilleri, J. and Winskel, G. (1995) CCS with priority choice. Inf. Comput. 116 (1)2637.CrossRefGoogle Scholar
Cardelli, L. and Gordon, A. D. (1998) Mobile ambients. In: Nivat, M. (ed.) FoSSaCS. Springer-Verlag Lecture Notes in Computer Science 1378 140155.CrossRefGoogle Scholar
Cleaveland, R. and Hennessy, M. (1990) Priorities in process algebras. Inf. Comput. 87 (1/2)5877.CrossRefGoogle Scholar
Cleaveland, R., Lüttgen, G. and Natarajan, V. (2001) Priority in process algebra. In: Bergstra, J., Ponse, A. and Smolka, S. (eds.) Handbook of Process Algebra, Elsevier Science Publishers 711765.CrossRefGoogle Scholar
Ene, C. and Muntean, T. (1999) Expressiveness of point-to-point versus broadcast communications. In: Ciobanu, G. and Paun, G. (eds.) FCT. Springer-Verlag Lecture Notes in Computer Science 1684 258268.CrossRefGoogle Scholar
Hermanns, H. (2002) Interactive Markov Chains: The Quest for Quantified Quality. Springer-Verlag Lecture Notes in Computer Science 2428.Google Scholar
Hoare, C. A. R. (1985) Communicating sequential processes, Prentice-Hall.Google Scholar
Honda, K. and Tokoro, M. (1991) An object calculus for asynchronous communication. In: America, P. (ed.) ECOOP. Springer-Verlag Lecture Notes in Computer Science 512 133147.CrossRefGoogle Scholar
Le Lann, G. (1977) Distributed systems – towards a formal approach. In: IFIP Congress 155–160.Google Scholar
Milner, R. (1980) A Calculus of Communicating Systems. Springer-Verlag Lecture Notes in Computer Science 92.CrossRefGoogle Scholar
Milner, R. (1990) Functions as processes. In: Proceedings of the seventeenth international colloquium on Automata, languages and programming, Springer-Verlag 167180.CrossRefGoogle Scholar
Milner, R. (1993) The polyadic pi-calculus: a tutorial. In: Bauer, F. L., Brauer, W. and Schwichtenberg, H. (eds.) Logic and Algebra of Specification, Springer-Verlag 203–246. (Preprint version (1991) available at citeseer.ist.psu.edu/article/milner91polyadic.html.)Google Scholar
Milner, R. (1999) Communicating and mobile systems: the π-calculus, Cambridge University Press.Google Scholar
Milner, R., Parrow, J. and Walker, D. (1992a) A calculus of mobile processes, I. Inf. Comput. 100 (1)140.CrossRefGoogle Scholar
Milner, R., Parrow, J. and Walker, D. (1992b) A calculus of mobile processes, II. Inf. Comput. 100 (1)4177.CrossRefGoogle Scholar
Minsky, M. (1967) Computation: finite and infinite machines, Prentice-Hall.Google Scholar
Nestmann, U. (2000) What is a “good” encoding of guarded choice? Inf. Comput. 156 (1–2)287319.CrossRefGoogle Scholar
Palamidessi, C. (1997) Comparing the expressive power of the synchronous and the asynchronous pi-calculus. In: POPL. 256–265.Google Scholar
Palamidessi, C. (2003) Comparing the expressive power of the synchronous and asynchronous pi-calculi. Mathematical Structures in Computer Science 13 (5)685719.CrossRefGoogle Scholar
Palamidessi, C. and Herescu, O. M. (2005) A randomized encoding of the pi-calculus with mixed choice. Theor. Comput. Sci. 335 (2–3)373404.CrossRefGoogle Scholar
Phillips, I. (2001) CCS with priority guards. In: Larsen, K. G. and Nielsen, M. (eds.) CONCUR. Springer-Verlag Lecture Notes in Computer Science 2154 305320.CrossRefGoogle Scholar
Phillips, I. (2008) CCS with priority guards. Journal of Logic and Algebraic Programming 75 (2)139165.CrossRefGoogle Scholar
Versari, C., Busi, N. and Gorrieri, R. (2007) On the expressive power of global and local priority in process calculi. In: Caires, L. and Vasconcelos, V. T. (eds.) CONCUR. Springer-Verlag Lecture Notes in Computer Science 4703 241255.CrossRefGoogle Scholar
Vigliotti, M., Phillips, I. and Palamidessi, C. (2007) Tutorial on separation results in process calculi via leader election problems. Theoretical Computer Science 388 (1–3)267289.CrossRefGoogle Scholar