Published online by Cambridge University Press: 27 October 2010
We show that, for any abstract complexity measure in the sense of Blum and for any computable function f (or computable operator F), the class of problems that are f-speedable (or F-speedable) does not have effective measure 0. On the other hand, for sufficiently fast growing f (or F), the class of non-speedable computable problems does not have effective measure 0. These results answer some questions raised by Calude and Zimand. We also give a quantitative analysis of Borodin and Trakhtenbrot's Gap Theorem, which corrects a claim by Calude and Zimand.