Published online by Cambridge University Press: 17 May 2013
We examine a construction due to Fouché in which a Brownian motion is constructed from an algorithmically random infinite binary sequence. We show that although the construction is provably not computable in the sense of computable analysis, a lower bound for the rate of convergence is computable in any upper bound for the compressibilty of the sequence, making the construction layerwise computable.
The research in this paper was supported by the National Research Foundation (NRF) of South Africa and by the European Union grant agreement PIRSES-GA-2011-2011-294962 in Computable Analysis (COMPUTAL).