Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T06:57:53.874Z Has data issue: false hasContentIssue false

Higher-order psi-calculi

Published online by Cambridge University Press:  24 June 2013

JOACHIM PARROW
Affiliation:
Department of Information Technology, Uppsala University, Uppsala, Sweden Email: [email protected]; [email protected]; [email protected]; [email protected].
JOHANNES BORGSTRÖM
Affiliation:
Department of Information Technology, Uppsala University, Uppsala, Sweden Email: [email protected]; [email protected]; [email protected]; [email protected].
PALLE RAABJERG
Affiliation:
Department of Information Technology, Uppsala University, Uppsala, Sweden Email: [email protected]; [email protected]; [email protected]; [email protected].
JOHANNES ÅMAN POHJOLA
Affiliation:
Department of Information Technology, Uppsala University, Uppsala, Sweden Email: [email protected]; [email protected]; [email protected]; [email protected].

Abstract

In earlier work we explored the expressiveness and algebraic theory Psi-calculi, which form a parametric framework for extensions of the pi-calculus. In the current paper we consider higher-order psi-calculi through a technically surprisingly simple extension of the framework, and show how an arbitrary psi-calculus can be lifted to its higher-order counterpart in a canonical way. We illustrate this with examples and establish an algebraic theory of higher-order psi-calculi. The formal results are obtained by extending our proof repositories in Isabelle/Nominal.

Type
Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was partly supported by the Swedish Research Council grant UPMARC.

References

Åman Pohjola, J. and Raabjerg, P. (2012) Isabelle proofs for higher-order psi-calculi. Proof scripts for higher-order psi-calculi. (Available at http://www.it.uu.se/research/group/mobility/theorem/hopsi.tar.gz.)Google Scholar
Bengtson, J. (2010) Formalising process calculi, Ph.D. thesis, Uppsala University.Google Scholar
Borgström, J., Gutkovas, R., Parrow, J., Victor, B. and Åman Pohjola, J. (2013) A Sorted Semantic Framework for High-Level Concurrency.Google Scholar
Borgström, J.et al. (2011) Broadcast psi-calculi with an application to wireless protocols. In: Barthe, G., Pardo, A. and Schneider, G. (eds.) Proceedings SEFM. Springer-Verlag Lecture Notes in Computer Science 70417489.Google Scholar
Bengtson, J., Johansson, M., Parrow, J. and Victor, B. (2009) Psi-calculi: Mobile processes, nominal data, and logic. In: Proceedings of LICS 2009, IEEE Computer Society 3948. (Full version available at http://user.it.uu.se/~joachim/psi-long.pdf.)Google Scholar
Bengtson, J., Johansson, M., Parrow, J. and Victor, B. (2010) Weak equivalences in psi-calculi. In: Proceedings of LICS 2010, IEEE Computer Society 322331.Google Scholar
Bengtson, J., Johansson, M., Parrow, J. and Victor, B. (2011) Psi-calculi: a framework for mobile processes with nominal data and logic. Logical Methods in Computer Science 7 (1)2011.Google Scholar
Bengtson, J. and Parrow, J. (2009) Psi-calculi in Isabelle. In: Berghofer, S., Nipkow, T., Urban, C. and Wenzel, M. (eds.) Proceedings of TPHOLs 2009. Springer-Verlag Lecture Notes in Computer Science 567499114.Google Scholar
Demangeon, R., Hirschkoff, D. and Sangiorgi, D. (2009) Termination in higher-order concurrent calculi. In: Arbab, F. and Sirjani, M. (eds.) Proceedings FSEN. Springer-Verlag Lecture Notes in Computer Science 59618196.Google Scholar
Gabbay, M. and Pitts, A. (2001) A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13 341363.CrossRefGoogle Scholar
Johansson, M. (2010) Psi-calculi: a framework for mobile process calculi, Ph.D. thesis, Uppsala University.Google Scholar
Jeffrey, A. and Rathke, J. (2005) Contextual equivalence for higher-order pi-calculus revisited. Logical Methods in Computer Science 1 (1).Google Scholar
Johansson, M., Victor, B. and Parrow, J. (2010) A fully abstract symbolic semantics for psi-calculi. In: Proceedings of SOS 2009. Electronic Proceedings in Theoretical Computer Science 181731.Google Scholar
Lanese, I., Pérez, J. A., Sangiorgi, D. and Schmitt, A. (2008) On the expressiveness and decidability of higher-order process calculi. In: Proceedings LICS, IEEE Computer Society 145155.Google Scholar
Lanese, I., Pérez, J. A., Sangiorgi, D. and Schmitt, A. (2010) On the expressiveness of polyadic and synchronous communication in higher-order process calculi. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F. and Spirakis, P. G. (eds.) Proceedings ICALP (2). Springer-Verlag Lecture Notes in Computer Science 6199442453.Google Scholar
Pitts, A. M. (2003) Nominal logic, a first order theory of names and binding. Information and Computation 186 165193.CrossRefGoogle Scholar
Sangiorgi, D. (1993) From pi-calculus to higher-order pi-calculus – and back. In: Gaudel, M.-C. and Jouannaud, J.-P. (eds.) Proceedings TAPSOFT. Springer-Verlag Lecture Notes in Computer Science 668151166.Google Scholar
Sangiorgi, D. (1996) Bisimulation for higher-order process calculi. Information and Computation 131 (2)141178.CrossRefGoogle Scholar
Sangiorgi, D. (1998) On the bisimulation proof method. Mathematical Structures in Computer Science 8 (5)447479. (An extended abstract also appeared in the Proceedings of MFCS '95, Springer-Verlag Lecture Notes in Computer Science 969 479–488.)CrossRefGoogle Scholar
Sangiorgi, D. (2001) Asynchronous process calculi: the first- and higher-order paradigms. Theoretical Computer Science 253 (2)311350.CrossRefGoogle Scholar
Thomsen, B. (1989) A calculus of higher order communicating systems. In: Proceedings POPL, ACM Press 143154.Google Scholar
Thomsen, B. (1993) Plain CHOCS: A second generation calculus for higher order processes. Acta Informatica 30 (1)159.CrossRefGoogle Scholar
Urban, C. (2008) Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning 40 (4)327356.CrossRefGoogle Scholar