Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T06:31:23.221Z Has data issue: false hasContentIssue false

Equivalence relations for modular performance evaluation in dtsPBC

Published online by Cambridge University Press:  14 May 2013

IGOR V. TARASYUK*
Affiliation:
A.P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Sciences, 6, Acad. Lavrentiev ave., 630090 Novosibirsk, Russian Federation Email: [email protected]

Abstract

We define a number of stochastic equivalences in the dtsPBC framework, which is a discrete time stochastic extension of finite Petri box calculus (PBC) enriched with iteration. These equivalences allow the identification of stochastic processes that have similar behaviour but are differentiated by the semantics of the calculus. We explain how the equivalences we propose can be used to reduce transition systems of expressions, and demonstrate how to apply the equivalences to compare the stationary behaviour. The equivalences guarantee a coincidence of performance indices for stochastic systems, and can be used for performance analysis simplification. We use a case study to outline a method of modelling, performance evaluation and behaviour preserving reduction of concurrent computing systems, and apply it to the dining philosophers system.

Type
Paper
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van der Aalst, W. M. P., van Hee, K. M. and Reijers, H. A. (2000) Analysis of discrete-time stochastic Petri nets. Statistica Neerlandica 54 (2)237255.CrossRefGoogle Scholar
Autant, C. and Schnoebelen, Ph. (1992) Place bisimulations in Petri nets. In: Proceedings of 13th ICATPN. Springer-Verlag Lecture Notes in Computer Science 616 4561.Google Scholar
Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G. and Haddad, S. (2011) Lumping partially symmetric stochastic models. Performance Evaluation 68 2144.CrossRefGoogle Scholar
Bergstra, J. A. and Klop, J. W. (1985) Algebra of communicating processes with abstraction. Theoretical Computer Science 37 77121.Google Scholar
Bernardo, M. (2007) A survey of Markovian behavioral equivalences. In: Proceedings of 7th SFM. Springer-Verlag Lecture Notes in Computer Science 4486 180219.Google Scholar
Bernardo, M., Donatiello, L. and Gorrieri, R. (1998) A formal approach to the integration of performance aspects in the modeling and analysis of concurrent systems. Information and Computation 144 (2)83154.CrossRefGoogle Scholar
Bernardo, M. and Gorrieri, R. (1998) A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202 154.CrossRefGoogle Scholar
Best, E. and Koutny, M. (1995) A refined view of the box algebra. In: Proceedings of 16th ICATPN. Springer-Verlag Lecture Notes in Computer Science 935 120.Google Scholar
Best, E., Devillers, R. and Hall, J. G. (1992) The box calculus: a new causal algebra with multi-label communication. In: Advances in Petri Nets 1992. Springer-Verlag Lecture Notes in Computer Science 609 2169.CrossRefGoogle Scholar
Best, E., Devillers, R. and Koutny, M. (2001) Petri net algebra, EATCS Monographs on Theoretical Computer Science, Springer-Verlag.CrossRefGoogle Scholar
Bravetti, M., Bernardo, M. and Gorrieri, R. (2008) Towards performance evaluation with general distributions in process algebras. In: Proceedings of 9th CONCUR. Springer-Verlag Lecture Notes in Computer Science 1466 405422.Google Scholar
Brinksma, E. and Hermanns, H. (2001) Process algebra and Markov chains. In: Proceedings of 1st EEF/Euro Summer School of Trends in Computer Science. Springer-Verlag Lecture Notes in Computer Science 2090 183231.Google Scholar
Brinksma, E., Katoen, J.-P., Langerak, R. and Latella, D. (1995) A stochastic causality-based process algebra. The Computer Journal 38 (7)552565.Google Scholar
Buchholz, P. (1995) A notion of equivalence for stochastic Petri nets. In: Proceedings of 16th ICATPN. Springer-Verlag Lecture Notes in Computer Science 935 161180.Google Scholar
Buchholz, P. (1998) Iterative decomposition and aggregation of labeled GSPNs. In: Proceedings of 19th ICATPN. Springer-Verlag Lecture Notes in Computer Science 1420 226245.CrossRefGoogle Scholar
Buchholz, P. and Tarasyuk, I. V. (2001) Net and algebraic approaches to probablistic modeling. Joint Novosibirsk Computing Center and Institute of Informatics Systems Bulletin, Series Computer Science 15 3164.Google Scholar
Derisavi, S., Hermanns, H. and Sanders, W. H. (2003) Optimal state-space lumping of Markov chains. Information Processing Letters 87 (6)309315.CrossRefGoogle Scholar
Fourneau, J. M. (2010) Collaboration of discrete-time Markov chains: Tensor and product form. Performance Evaluation 67 779796.Google Scholar
van Glabbeek, R. J., Smolka, S. A. and Steffen, B. (1995) Reactive, generative, and stratified models of probabilistic processes. Information and Computation 121 (1)5980.Google Scholar
Hermanns, H. and Rettelbach, M. (1994) Syntax, semantics, equivalences and axioms for MTIPP. In: Herzog, U. and Rettelbach, M. (eds.) Proceedings of 2nd International Workshop on Process Algebras and Performance Modelling (PAPM). Arbeitsberichte des IMMD 27, University of Erlangen 7188.Google Scholar
Hillston, J. (1994) The nature of synchronisation. Proceedings of 2nd International Workshop on Process Algebras and Performance Modelling (PAPM). Arbeitsberichte des IMMD 27, University of Erlangen 5170.Google Scholar
Hillston, J. (1996) A compositional approach to performance modelling, Cambridge University Press.Google Scholar
Horváth, A., Paolieri, M., Ridi, L. and Vicario, E. (2012) Transient analysis of non-Markovian models using stochastic state classes. Performance Evaluation 69 (7–8)315335.Google Scholar
Jou, C.-C. and Smolka, S. A. (1990) Equivalences, congruences and complete axiomatizations for probabilistic processes. In: Proceedings of 1st CONCUR. Springer-Verlag Lecture Notes in Computer Science 458 367383.Google Scholar
Katoen, J.-P., Brinksma, E., Latella, D. and Langerak, R. (1996) Stochastic simulation of event structures. In: Ribaudo, M. (ed.) Proceedings of 4th International Workshop on Process Algebra and Performance Modelling (PAPM), CLUT Press, Torino, Italy2140.Google Scholar
Katoen, J.-P. and D'Argenio, P. R. (2001) General distributions in process algebra. In: Proceedings of 1st EEF/Euro Summer School of Trends in Computer Science. Springer-Verlag Lecture Notes in Computer Science 2090 375429.Google Scholar
Katoen, J.-P., Zapreev, I. S., Hahn, E. M., Hermanns, H. and Jansen, D. N. (2011) The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68 90104.Google Scholar
Koutny, M. (2000) A compositional model of time Petri nets. In: Proceedings of 21st ICATPN. Springer-Verlag Lecture Notes in Computer Science 1825 303322.Google Scholar
Kulkarni, V. G. (2009) Modeling and analysis of stochastic systems. Texts in Statistical Science, Chapman and Hall/CRC Press.Google Scholar
Kwiatkowska, M. Z., Norman, G. J. and Parker, D. (2006) Symmetry reduction for probabilistic model checking. In: Proceedings of ICIC 2006. Springer-Verlag Lecture Notes in Computer Science 4114 234248.CrossRefGoogle Scholar
Larsen, K. G. and Skou, A. (1991) Bisimulation through probabilistic testing. Information and Computation 94 (1)128.Google Scholar
Macià, H., Valero, V., Cazorla, D. and Cuartero, F. (2004) Introducing the iteration in sPBC. In: Proceedings of 24th FORTE. Springer-Verlag Lecture Notes in Computer Science 3235 292308.Google Scholar
Macià, H., Valero, V., Cuartero, F. and Ruiz, M. C. (2008) sPBC: a Markovian extension of Petri box calculus with immediate multiactions. Fundamenta Informaticae 87 (3–4)367406.Google Scholar
Macià, H., Valero, V. and de-Frutos, D. (2001) sPBC: a Markovian extension of finite Petri box calculus. Proceedings of 9th IEEE International Workshop on Petri Nets and Performance Models (PNPM), IEEE Computer Society Press 207216.Google Scholar
Markovski, J. and de Vink, E. P. (2008) Extending timed process algebra with discrete stochastic time. In: Proceedings of 12th AMAST. Springer-Verlag Lecture Notes in Computer Science 5140 268283.CrossRefGoogle Scholar
Markovski, J. and de Vink, E. P. (2009) Performance evaluation of distributed systems based on a discrete real- and stochastic-time process algebra. Fundamenta Informaticae 95 (1)157186.Google Scholar
Marroquín, O. and de-Frutos, D. (2001) Extending the Petri box calculus with time. In: Proceedings of 22nd ICATPN. Springer-Verlag Lecture Notes in Computer Science 2075 303322.Google Scholar
Marsan, M. A. (1990) Stochastic Petri nets: an elementary introduction. In: Advances in Petri Nets 1989. Springer-Verlag Lecture Notes in Computer Science 424 129.CrossRefGoogle Scholar
Merlin, P. and Farber, D. J. (1976) Recoverability of communication protocols: implications of a theoretical study. IEEE Transactions on Communications 24 (9)10361043.Google Scholar
Milner, R. A. J. (1989) Communication and concurrency, Prentice-Hall.Google Scholar
Milner, R. A. J., Parrow, J. and Walker, D. (1992) A calculus of mobile processes (I and II). Information and Computation 100 (1)177.Google Scholar
Molloy, M. K. (1981) On the integration of the throughput and delay measures in distributed processing models, Ph.D. thesis, University of California, Los Angeles.Google Scholar
Molloy, M. K. (1985) Discrete time stochastic Petri nets. IEEE Transactions on Software Engineering 11 (4)417423.CrossRefGoogle Scholar
Niaouris, A. (2005) An algebra of Petri nets with arc-based time restrictions. In: Proceedings of 1st ICTAC. Springer-Verlag Lecture Notes in Computer Science 3407 447462.Google Scholar
Paige, R. and Tarjan, R. E. (1987) Three partition refinement algorithms. SIAM Journal on Computing 16 (6)973989.CrossRefGoogle Scholar
Peterson, J. L. (1981) Petri net theory and modeling of systems, Prentice-Hall.Google Scholar
Priami, C. (1996) Stochastic π-calculus with general distributions. In: Ribaudo, M. (ed.) Proceedings of 4th International Workshop on Process Algebra and Performance Modelling (PAPM), CLUT Press, Torino, Italy, 4157.Google Scholar
Ramchandani, C. (1973) Perfomance evaluation of asynchronous concurrent systems by timed Petri nets, Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
Tarasyuk, I. V. (2005) Discrete time stochastic Petri box calculus. Berichte aus dem Department für Informatik 3/05, Carl von Ossietzky Universität Oldenburg, Germany.Google Scholar
Tarasyuk, I. V. (2006) Iteration in discrete time stochastic Petri box calculus. Bulletin of the Novosibirsk Computing Center, Series Computer Science, IIS Special Issue 24 129148.Google Scholar
Tarasyuk, I. V. (2007) Stochastic Petri box calculus with discrete time. Fundamenta Informaticae 76 (1–2)189218.Google Scholar
Tarasyuk, I. V. (2008) Investigating equivalence relations in dtsPBC. Berichte aus dem Department für Informatik 5/08, Carl von Ossietzky Universität Oldenburg, Germany.Google Scholar
Tarasyuk, I. V., Macià, H. and Valero, V. (2010) Discrete time stochastic Petri box calculus with immediate multiactions. Technical Report DIAB-10-03-1, Department of Computer Systems, High School of Computer Science Engineering, University of Castilla-La Mancha, Albacete, Spain (available at http://itar.iis.nsk.su/files/itar/pages/dtsipbc.pdf).Google Scholar
Wimmer, R., Derisavi, S. and Hermanns, H. (2010) Symbolic partition refinement with automatic balancing of time and space. Performance Evaluation 67 816836.Google Scholar