No CrossRef data available.
Published online by Cambridge University Press: 12 May 2015
This paper demonstrates the usefulness of a comonadic approach to give previously unknown characterisation of projective objects in certain categories over particular subclasses of epimorphisms. This approach is a simple adaptation of a powerful technique due to Escardó which has been used extensively to characterise injective spaces and locales over various kinds of embeddings, but never previously for projective structures. Using some examples, we advertise the versatility of this approach – in particular, highlighting its advantage over existing methods on characterisation of projectives, which is that the comonadic machinery forces upon us the structural properties of projectives without relying on extraneous characterisations of the underlying object of the coalgebra arising from the comonad.