Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T16:42:37.306Z Has data issue: false hasContentIssue false

Weak precompactness, strong boundedness, and weak complete continuity

Published online by Cambridge University Press:  24 October 2008

Catherine A. Abbott
Affiliation:
University of North Texas, Denton, Texas, U.S.A.
Elizabeth M. Bator
Affiliation:
University of North Texas, Denton, Texas, U.S.A.
Russell G. Bilyeu
Affiliation:
University of North Texas, Denton, Texas, U.S.A.
Paul W. Lewis
Affiliation:
University of North Texas, Denton, Texas, U.S.A.

Abstract

Weak precompactness in spaces of vector measures and in the space of Bochner integrable functions is studied. Uniform countable additivity and uniform integrability are characterized in terms of weak precompactness. Through this, a connection between strongly bounded operators and operators having weakly precompact adjoints on abstract continuous function spaces is established. These operators are compared with weakly completely continuous operators.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abbott, C. A.. Weakly precompact and GSP operators on continuous function spaces. Bull. Polish Acad. Sci. Math. (To appear.)Google Scholar
[2]Bartle, R. G.. A general bilinear vector integral. Studia Math. 15 (1956), 337352.CrossRefGoogle Scholar
[3]Bator, E. M. and Lewis, P. W.. Weak precompactness and the weak RNP. Bull. Polish Acad. Sci. Math. 37 (1989), 8190.Google Scholar
[4]Bessaga, C. and Pelczynski, A.. On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958), 151164.CrossRefGoogle Scholar
[5]Bilyeu, R. G. and Lewis, P. W.. Uniform differentiability, uniform absolute continuity, and the Vitali–Hahn–Saks theorem. Rocky Mountain J. Math. 9 (1980), 533557.Google Scholar
[6]Bombal, F. and Cembranos, P.. Characterization of some classes of operators on spaces of vector-valued continuous functions. Math. Proc. Cambridge Philos. Soc. 97 (1985), 137146.CrossRefGoogle Scholar
[7]Bombal, F. and Cembranos, P.. Dieudonne operators on C(K, E). Bull. Polish Acad. Sci. Math. 34 (1986), 301305.Google Scholar
[8]Bourgain, J.. An averaging result for ℓ1-sequences and applications to weakly conditionally compact sets in . Israel J. Math. 32 (1979), 289298.CrossRefGoogle Scholar
[9]Brooks, J. K. and Lewis, P. W.. Linear operators and vector measures. Trans. Amer. Math. Soc. 192 (1974), 139162.CrossRefGoogle Scholar
[10]Brooks, J. K. and Lewis, P. W.. Operators on continuous function spaces and convergence in the space of operators. Adv. in Math. 29 (1978), 157177.CrossRefGoogle Scholar
[11]Diestel, J.. Sequences and Series in Banach Spaces. Graduate Texts in Mathematics no. 92 (Springer-Verlag, 1984).CrossRefGoogle Scholar
[12]Diestel, J. and Uhl, J. J. Jr., Vector Measures. Math. Surveys no. 15, (American Mathematical Society, 1977).CrossRefGoogle Scholar
[13]Dinculeanu, N.. Vector Measures (Pergamon Press, 1967).CrossRefGoogle Scholar
[14]Dobrakov, I.. On representation of linear operators on C 0(T, X). Czechoslovak Math. J. 21 (1971), 1330.CrossRefGoogle Scholar
[15]Dunford, N. and Schwartz, J. T.. Linear Operators, vol. 1 (Interscience, 1958).Google Scholar
[16]Ghoussoub, N. and Saab, P.. Weak compactness in spaces of Bochner integrable functions and the Radon–Nikodym property. Pacific J. Math. 110 (1984), 6570.CrossRefGoogle Scholar
[17]Grothendieck, A.. Sur les applications lineaires faiblement compactes d'espaces du type C(K). Canad. J. Math. 5 (1953), 129173.CrossRefGoogle Scholar
[18]James, R. C.. Separable conjugate spaces. Pacific J. Math. 10 (1960), 563571.CrossRefGoogle Scholar
[19]Janicka, L.. Some measure-theoretic characterizations of Banach spaces not containing ℓ1. Bull. Acad. Polon Sci. 27 (1979), 561565.Google Scholar
[20]Musial, K.. The weak Radon–Nikodym property in Banach spaces. Studia Math. 64 (1978), 151174.CrossRefGoogle Scholar
[21]Pisier, G.. Une propriete de stabilite de la classe des espaces ne contenant pas ℓ1. C. R. Acad. Sci. Paris Ser. A 286 (1978), 747749.Google Scholar
[22]Riddle, L. H., Saab, E. and Uhl, J. J. Jr., Sets with the weak Radon–Nikodym property in dual Banach spaces. Indiana Univ. Math. J. 32 (1983), 527540.CrossRefGoogle Scholar
[23]Rosenthal, H.. A characterization of Banach spaces containing ℓ1. Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 24112413.CrossRefGoogle Scholar
[24]Saab, P.. Weakly compact, unconditionally converging, and Dunford–Pettis operators on spaces of vector-valued continuous functions. Math. Proc. Cambridge Philos. Soc. 95 (1984), 101108.CrossRefGoogle Scholar
[25]Swartz, C.. Unconditionally converging operators on the space of continuous functions. Rev. Roumaine Math. Pures Appl. 17 (1972), 16951702.Google Scholar
[26]Talagrand, M.. Weak Cauchy sequences in L 1(E). Amer. J. Math. 106 (1984), 703724.CrossRefGoogle Scholar