Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-31T08:37:24.746Z Has data issue: false hasContentIssue false

Weak* and entropy approximation of nonhyperbolic measures: a geometrical approach

Published online by Cambridge University Press:  25 July 2019

LORENZO J. DÍAZ
Affiliation:
Departamento de Matemática PUC-Rio, Marquês de São Vicente 225, Gávea, Rio de Janeiro 22451-900, Brazil. e-mail: [email protected]
KATRIN GELFERT
Affiliation:
Instituto de Matemática, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Cidade Universitária - Ilha do Fundão, Rio de Janeiro 21945-909, Brazil. e-mail: [email protected]
BRUNO SANTIAGO
Affiliation:
Instituto de Matemática e Estatística, Universidade Federal Fluminense Rua Professor Marcos Waldemar de Freitas Reis, s/n, Bloco H - Campus do Gragoatá São Domingos, Niterói 24210-201, Brazil. e-mail: [email protected]

Abstract

We study C1-robustly transitive and nonhyperbolic diffeomorphisms having a partially hyperbolic splitting with one-dimensional central bundle whose strong un-/stable foliations are both minimal. In dimension 3, an important class of examples of such systems is given by those with a simple closed periodic curve tangent to the central bundle. We prove that there is a C1-open and dense subset of such diffeomorphisms such that every nonhyperbolic ergodic measure (i.e. with zero central exponent) can be approximated in the weak* topology and in entropy by measures supported in basic sets with positive (negative) central Lyapunov exponent. Our method also allows to show how entropy changes across measures with central Lyapunov exponent close to zero. We also prove that any nonhyperbolic ergodic measure is in the intersection of the convex hulls of the measures with positive central exponent and with negative central exponent.

Type
Research Article
Copyright
© Cambridge Philosophical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdenur, F., Bonatti, C., and Crovisier, S.. Nonuniform hyperbolicity for C 1-generic diffeomorphisms. Israel J. Math. 183 (2011), 160.CrossRefGoogle Scholar
Bochi, J., Bonatti, C., and Díaz, L. J.. Robust criterion for the existence of nonhyperbolic ergodic measures. Comm. Math. Phys. 344(3) (2016), 751795.CrossRefGoogle Scholar
Bochi, J., Bonatti, C., and Gelfert, K.. Dominated Pesin theory: Convex sum of hyperbolic measures. Israel J. Math. 226 (2018), 387417.CrossRefGoogle Scholar
Bonatti, C. and Crovisier, S.. Récurrence et généricité. Invent. Math. 158(1) (2004), 33104.CrossRefGoogle Scholar
Bonatti, C. and Díaz, L. J.. Persistent nonhyperbolic transitive diffeomorphisms. Ann. of Math. (2), 143(2) (1996), 357396.CrossRefGoogle Scholar
Bonatti, C. and Díaz, L. J.. Robust heterodimensional cycles and C 1-generic dynamics. J. Inst. Math. Jussieu 7(3) (2008), 469525.CrossRefGoogle Scholar
Bonatti, C. and Díaz, L. J.. Abundance of C 1-robust homoclinic tangencies. Trans. Amer. Math. Soc. 364(10) (2012), 51115148.Google Scholar
Bonatti, C., Díaz, L. J., and Bochi, J.. A criterion for zero averages and full support of ergodic measures. Mosc. Math. J. 18(1) (2018), 1561.Google Scholar
Bonatti, C., Díaz, L. J., Pujals, E. R., and Rocha, J.. Robustly transitive sets and heterodimensional cycles. Astérisque (286) (2003), xix, 187222. Geometric methods in dynamics. I.Google Scholar
Bonatti, C., Díaz, L. J., and Ures, R.. Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms. J. Inst. Math. Jussieu 1(4) (2002), 513541.Google Scholar
Bonatti, C., Díaz, L. J., and Viana, M.. Discontinuity of the Hausdorff dimension of hyperbolic sets. C. R. Acad. Sci. Paris Sér. I Math. 320(6) (1995), 713718.Google Scholar
Bonatti, C., Gogolev, A., and Potrie, R.. Anomalous partially hyperbolic diffeomorphisms ii: stably ergodic examples. Invent. Math. 206(3) (2016), 801836.CrossRefGoogle Scholar
Bonatti, C. and Zhang, J.. Periodic measures and partially hyperbolic homoclinic classes. Preprint arXiv:1609.08489 To appear in Trans. Amer. Math. Soc.Google Scholar
Burns, K. and Wilkinson, A.. On the ergodicity of partially hyperbolic systems. Ann. of Math. (2) 171(1) (2010), 451489.CrossRefGoogle Scholar
Crovisier, S.. Partial hyperbolicity far from homoclinic bifurcations. Adv. Math. 226(1) (2011), 673726.Google Scholar
Díaz, L. J., Gelfert, K., and Rams, M.. Nonhyperbolic step skew-products: ergodic approximation. Ann. Inst. H. Poincaré Anal. Non Linéaire 34(6) (2017), 15611598.Google Scholar
Díaz, L. J., Gelfert, K., and Rams, M.. Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products. Tr. Mat. Inst. Steklova 297 (Poryadok i Khaos v Dinamicheskikh Sistemakh) (2017), 113132.Google Scholar
Díaz, L. J., Gelfert, K., and Rams, M.. Entropy spectrum of lyapunov exponents for nonhyperbolic step skew-products and elliptic cocycles. Comm. Math. Phys. 367 (2019), 351416.Google Scholar
Dolgopyat, D., Viana, M., and Yang, J.. Geometric and measure-theoretical structures of maps with mostly contracting center. Comm. Math. Phys. 341(3) (2016), 9911014.Google Scholar
Gelfert, K.. Horseshoes for diffeomorphisms preserving hyperbolic measures. Math. Z. 283(3-4) (2016), 685701.CrossRefGoogle Scholar
Gorodetski, A. and Il’yashenko, Y. S.. Some new robust properties of invariant sets and attractors of dynamical systems. Funktsional. Anal. i Prilozhen 33(2) (1999), 1630, 95.Google Scholar
Gorodetski, A. and Pesin, Y.. Path connectedness and entropy density of the space of hyperbolic ergodic measures. In Modern theory of dynamical systems, volume 692 of Contemp. Math. (Amer. Math. Soc., Providence, RI, 2017), pages 111121.Google Scholar
Gorodetskiui, A. S., Il’yashenko, Y. S., Kleptsyn, V. A., and B, M.. Nalskiui. Nonremovability of zero Lyapunov exponents. Funktsional. Anal. i Prilozhen 39(1) (2005), 2738, 95.Google Scholar
Gourmelon, N.. Adapted metrics for dominated splittings. Ergodic Theory Dynam. Systems 27(6) (2007), 18391849.CrossRefGoogle Scholar
Hayashi, S.. Connecting invariant manifolds and the solution of the C 1 stability and Ω-stability conjectures for flows. Ann. of Math. (2) 145(1) (1997), 81137.Google Scholar
Hirsch, M. W., Pugh, C. C., and Shub, M.. Invariant manifolds. Lecture Notes in Math. Vol. 583 (Springer-Verlag, Berlin-New York, 1977).Google Scholar
Katok, A. B.. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. (51) (1980), 137173.CrossRefGoogle Scholar
Katok, A. B. and Hasselblatt, B.. Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1995). With a supplementary chapter by Katok and Leonardo Mendoza.Google Scholar
Lindenstrauss, J., Olsen, G. H., and Sternfeld, Y.. The Poulsen simplex. Ann. Inst. Fourier (Grenoble) 28(1) (1978), vi, 91114.CrossRefGoogle Scholar
Luzzatto, S. and Sánchez-Salas, F. J.. Uniform hyperbolic approximations of measures with non-zero Lyapunov exponents. Proc. Amer. Math. Soc. 141(9) (2013), 31573169.CrossRefGoogle Scholar
Mañé, R.. Contributions to the stability conjecture. Topology 17(4) (1978), 383396.CrossRefGoogle Scholar
Mañé, R.. An ergodic closing lemma. Ann. of Math. (2) 116(3) (1982), 503540.CrossRefGoogle Scholar
Oseledec, V. I.. A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems. Trudy Moskov. Mat. Obšč. 19 (1968), 179210.Google Scholar
Hertz, F. R., Hertz, M. A. R., Tahzibi, A., and Ures, R.. Maximizing measures for partially hyperbolic systems with compact center leaves. Ergodic Theory Dynam. Systems 32(2) (2012), 825839.CrossRefGoogle Scholar
Hertz, F. R., Hertz, M. A. R., and Ures, R.. A survey of partially hyperbolic dynamics. In Partially hyperbolic dynamics, laminations, and Teichmüller flow, volume 51 of Fields Inst. Commun. (Amer. Math. Soc., Providence, RI, 2007), pages 3587.Google Scholar
Shub, M.. Topologically transitive diffeomorphisms of T 4 . In Proceedings of the Symposium on Differential Equations and Dynamical Systems, volume 206 of Lecture Notes in Math. (Springer, Berlin, Heidelberg, 1971), pages 3940.CrossRefGoogle Scholar
Sigmund, K.. On dynamical systems with the specification property. Trans. Amer. Math. Soc. 190 (1974), 285299.Google Scholar
Simon, B.. Convexity, volume 187 of Cambridge Tracts in Mathematics (Cambridge University Press, Cambridge, 2011). An analytic viewpoint.Google Scholar
Tahzibi, A.. personal communication.Google Scholar
Tahzibi, A. and Yang, J.. Invariance principle and rigidity of high entropy measures. Trans. Amer. Math. Soc. 371 (2019), 12311251.CrossRefGoogle Scholar
Walters, P.. An introduction to ergodic theory, volume 79 of Graduate Texts in Math. (Springer-Verlag, New York-Berlin, 1982).CrossRefGoogle Scholar
Wang, Z. and Sun, W.. Lyapunov exponents of hyperbolic measures and hyperbolic periodic orbits. Trans. Amer. Math. Soc. 362(8) (2010), 42674282.CrossRefGoogle Scholar
Yang, D. and Zhang, J.. Non-hyperbolic ergodic measures and horseshoes in partially hyperbolic homoclinic classes. Preprint arXiv:1803.06572 (17&20 March, 2018).Google Scholar