Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T01:02:16.688Z Has data issue: false hasContentIssue false

Units in real cyclic quartic fields

Published online by Cambridge University Press:  24 October 2008

T. W. Cusick
Affiliation:
Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14214, U.S.A.

Extract

Let F be a totally real quartic field. For any α in F, let α, α′, α″, α‴ or α(0) = α(1), α(2), α(3) denote the conjugates of α. Define the function T(α) by

We define a triple of units ε1, ε2, ε3 in F as follows. Let ε1 be a unit which gives the least value of T(ε) for any unit ε ≠ = ± 1 in F. Let ε2 be a unit which gives the least value of T(ε) for any unit ε ≠ = ± ε1m with m a rational integer. Let ε3 be a unit which gives the least value of T(ε) for ε ≠ = ± ε1m ε2n with m and n rational integers. We call ε1, ε2, ε3 the successive unit minima for T(ε).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cornell, G. and Washington, L. C.. Class numbers of cyclotomic fields. J. Number Theory 21 (1985), 260274.CrossRefGoogle Scholar
[2]Cusick, T. W.. Finding fundamental units in totally real fields. Math. Proc. Cambridge Philos. Soc. 96 (1984), 191194.CrossRefGoogle Scholar
[3]Gras, M.-N.. Table numérique du nombre de classes et des unités des extensions cycliques réeles de degré 4 de Q. Publ. Math. Fac. Sci. Besançon (19771978), fasc. 2, 179.Google Scholar
[4]Hasse, H.. Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern. Abh. Deutsch. Akad. Wiss. Berlin 2 (1948), 195.Google Scholar
[5]Lehmer, E.. Connection between Gaussian periods and cyclic units. Math. Comp. 50 (1988), 535541.CrossRefGoogle Scholar