Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T15:09:06.008Z Has data issue: false hasContentIssue false

A two-dimensional circular inclusion problem

Published online by Cambridge University Press:  24 October 2008

R. D. List
Affiliation:
University of Western Australia

Abstract

The elastic fields in an elastic circular inclusion and its surrounding infinite dissimilar elastic matrix, are determined when either the matrix or inclusion is subject to a concentrated force or edge dislocation.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Dundurs, J. and Hetényi, M.J. Appl. Mech. Trans. A.S.M.E., Series E, 28 (1961), 103111.CrossRefGoogle Scholar
(2)Hetenyi, M. and Dundurs, J.J. Appl. Mech. Trans. A.S.M.E., Series E, 29 (1962), 362368.Google Scholar
(3)Dundurs, J.J. Appl. Mech. Trans. A.S.M.E., Series E, 30 (1963), 568570.CrossRefGoogle Scholar
(4)Dundurs, J. and Mura, T.J. Mech. Phya. Solids 12 (1964), 177189.CrossRefGoogle Scholar
(5)Dundurs, J. and Sendeckyj, G. P.J. Mech. Phya. Solida 13 (1965), 141147.CrossRefGoogle Scholar
(6)Bhargava, R. D. and Kapoor, O. P.Proc. Cambridge Philoa. Soc. 62 (1966), 113.CrossRefGoogle Scholar
(7)Muskhelishvili, N. I.Some basic problems of the mathematical theory of elasticity (Noordhoff; Groningen, Holland, 1953).Google Scholar