Published online by Cambridge University Press: 24 October 2008
A solution which is exact within the framework of the classical theory of elasticity is obtained for the title problem assuming that the half space is homogeneous and isotropic, and that the die indents at a constant rate. If the shape of the die and the elastic medium are specified, the rate of indentation uniquely determines the outward speed of the edge of the expanding contact zone. The magnitude of this speed, relative to the speeds of the dilatational, rotational and Rayleigh waves in the elastic medium, determines which of four possible characteristic transient stress states will occur. Each of the four ranges of contact speed is solved by the method of rotational superposition of self-similar potentials which is briefly described in the Appendix.