Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T20:51:11.917Z Has data issue: false hasContentIssue false

Torelli theorem for the moduli spaces of pairs

Published online by Cambridge University Press:  01 May 2009

VICENTE MUÑOZ*
Affiliation:
Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, Serrano 113 bis, 28006 Madrid, Spain. and Facultad de Matemáticas, Universidad Complutense de Madrid, Plaza Ciencias 3, 28040 Madrid, Spain. e-mail: [email protected]

Abstract

Let X be a smooth projective curve of genus g ≥ 2 over ℂ. A pair (E, φ) over X consists of an algebraic vector bundle E over X and a section φ ∈ H0(E). There is a concept of stability for pairs which depends on a real parameter τ. Here we prove that the third cohomology groups of the moduli spaces of τ-stable pairs with fixed determinant and rank n ≥ 2 are polarised pure Hodge structures, and they are isomorphic to H1(X) with its natural polarisation (except in very few exceptional cases). This implies a Torelli theorem for such moduli spaces. We recover that the third cohomology group of the moduli space of stable bundles of rank n ≥ 2 and fixed determinant is a polarised pure Hodge structure, which is isomorphic to H1(X). We also prove Torelli theorems for the corresponding moduli spaces of pairs and bundles with non-fixed determinant.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Arapura, D. and Sastry, P.Intermediate Jacobians and Hodge structures of moduli spaces. Proc. Indian Acad. Sci. Math. Sci. 110 (2000), 126.CrossRefGoogle Scholar
[2]Balaji, V. and Vishwanath, P. A.Deformations of Picard sheaves and moduli of pairs. Duke Math. J. 76 (1994), no. 3, 773792.CrossRefGoogle Scholar
[3]Bertram, A.Stable pairs and stable parabolic pairs. J. Algebraic Geom. 3 (1994), no. 4, 703724.Google Scholar
[4]Biswas, I. and Muñoz, V.The Torelli theorem for the moduli spaces of connections on a Riemann surface. Topology 46 (2007), no. 3, 295317.CrossRefGoogle Scholar
[5]Bradlow, S. B. and Daskalopoulos, Moduli of stable pairs for holomorphic bundles over Riemann surfaces. Internat. J. Math. 2 (1991), 477513.CrossRefGoogle Scholar
[6]Bradlow, S. B. and García–Prada, O.Stable triples, equivariant bundles and dimensional reduction. Math. Ann. 304 (1996), 225252.Google Scholar
[7]Bradlow, S. B., García–Prada, O. and Gothen, P. B.Moduli spaces of holomorphic triples over compact Riemann surfaces. Math. Ann. 328 (2004), 299351.CrossRefGoogle Scholar
[8]Bradlow, S. B., García-Prada, O., Muñoz, V. and Newstead, P. E.Coherent systems and Brill-Noether theory. Internat. J. Math. 14 (2003), no. 7, 683733.CrossRefGoogle Scholar
[9]Deligne, P.Théorie de Hodge I, II, III. In Proc. I.C.M., vol. 1, 1970, pp. 425430; in Publ. Math. I.H.E.S. 40 (1971), 5–58; ibid. 44 (1974), 5–77.Google Scholar
[10]García–Prada, O.Dimensional reduction of stable bundles, vortices and stable pairs. Internat. J. Math. 5 (1994), 152.CrossRefGoogle Scholar
[11]Kouvidakis, A. and Pantev, T.The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302 (1995), 225268.Google Scholar
[12]Mumford, D. and Newstead, P.Periods of a moduli space of bundles on curves. Amer. J. Math. 90 (1968), 12001208.CrossRefGoogle Scholar
[13]Muñoz, V.Hodge polynomials of the moduli spaces of rank 3 pairs. Geometriae Dedicata. 136 (2008), 1746.CrossRefGoogle Scholar
[14]Muñoz, V., Ortega, D. and Vázquez-Gallo, M-J.Hodge polynomials of the moduli spaces of pairs. Internat. J. Math. 18 (2007), 695721.CrossRefGoogle Scholar
[15]Narasimhan, M. S. and Ramanan, S.Geometry of Hecke cycles. I. C. P. Ramanujam—a tribute, pp. 291345, Tata Inst. Fund. Res. Studies in Math. 8 (Springer, 1978).Google Scholar
[16]Narasimhan, M. S. and Ramanan, S.Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2) 89 (1969), 1451.CrossRefGoogle Scholar
[17]Schmitt, A.A universal construction for the moduli spaces of decorated vector bundles. Transform. Groups 9 (2004), 167209.CrossRefGoogle Scholar
[18]Thaddeus, M.Stable pairs, linear systems and the Verlinde formula. Invent. Math. 117 (1994), 317353.CrossRefGoogle Scholar
[19]Tyurin, A. N.Geometry of moduli of vector bundles. Russ. Math. Surverys 29 (1974), 5988.Google Scholar