No CrossRef data available.
Published online by Cambridge University Press: 24 October 2008
In topology and geometry it is often instructive to consider objects with isolated singularities. Frequently such objects turn out to be relatively tractable and to provide useful insights into more general situations. For actions of finite cyclic groups on manifolds the standard notion of singularity is a point that is left fixed by some non-trivial element of the group (but not necessarily by the whole group). If the singular set is isolated the action is said to be pseudofree. Special cases of pseudofree actions have been studied in several independent contexts; in particular, previous papers of Cappell and Shaneson [4] and the authors [15] considered classes of ‘nice’ pseudofree actions on spheres. References to other works are given at the beginning of [15] (and in the meantime there has also been considerable further activity).