Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T01:11:24.712Z Has data issue: false hasContentIssue false

Symmetries of projected wallpaper patterns

Published online by Cambridge University Press:  01 December 2006

ISABEL S. LABOURIAU
Affiliation:
Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal. e-mail: [email protected]
ELIANA M. PINHO
Affiliation:
Departamento de Matemática Aplicada, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal. e-mail: [email protected]

Abstract

In this paper we study periodic functions of one and two variables that are invariant under a subgroup of the Euclidean group. Starting with a function $f$ defined on the plane we obtain a function of one variable by two methods: (1) we project the values on a strip into its edge, by integrating $f$ along the width; and (2) we restrict $f$ to a line. If the functions had been obtained by solving a partial differential equation equivariant under the Euclidean group, how do the symmetries of the function of one variable compare to those of solutions of equations formulated directly in one dimension?

Some of the symmetries of projected and of restricted functions may be obtained knowing only the symmetries of the original functions. Extra symmetries arise at special widths of the strip and at some special positions of the line used for restriction. We obtain a general description of the two types of symmetries and discuss how they arise in the wallpaper groups (crystallographic groups of the plane). We show that the projections and restrictions of solutions of differential equations in the plane may have symmetry groups larger than those of solutions of problems formulated in one dimension.

Type
Research Article
Copyright
© 2006 Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)