Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T17:04:32.872Z Has data issue: false hasContentIssue false

The structure of triple homomorphisms onto prime algebras

Published online by Cambridge University Press:  23 October 2018

CHENG–KAI LIU*
Affiliation:
Department of Mathematics, National Changhua University of Education, No. 1 Jinde Road, Changhua City, Changhua County 50007, Taiwan, R.O.C. e-mail: [email protected]

Abstract

Triple homomorphisms on C*-algebras and JB*-triples have been studied in the literature. From the viewpoint of associative algebras, we characterise the structure of triple homomorphisms from an arbitrary ⋆-algebra onto a prime *-algebra. As an application, we prove that every triple homomorphism from a Banach ⋆-algebra onto a prime semisimple idempotent Banach *-algebra is continuous. The analogous results for prime C*-algebras and standard operator *-algebras on Hilbert spaces are also described.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ancochea, G. On semi-automorphisms of division algebras. Ann. Math. 48 (1947), 147154.Google Scholar
[2] Apazoglou, M. and Peralta, A. M. Linear isometries between real JB*-triples and C*-algebras. Quart. J. Math. 65 (2014), 485503.Google Scholar
[3] Ara, P. and Mathieu, M. Local Multipliers of C*-algebras (Springer–Verlag, London 2002).Google Scholar
[4] Aupetit, B. The uniqueness of the complete norm topology in Banach algebras and Banach Jordan algebras. J. Funct. Anal. 47 (1982), 16.Google Scholar
[5] Barton, T. J., Dang, T. and Horn, G. Normal representations of Banach Jordan triple systems. Proc. Amer. Math. Soc. 102 (1988), 551555.Google Scholar
[6] Baxter, W. E. and Martindale, W. S. III Jordan homomorphisms of semiprime rings. J. Algebra 56 (1979), 457471.Google Scholar
[7] Beidar, K. I., Martindale, W. S. 3rd and Mikhalev, A. V. Rings with Generalized Identities (Marcel Dekker, Inc., New York–Basel–Hong Kong, 1996).Google Scholar
[8] Brešar, M. Jordan mappings of semiprime rings. J. Algebra 127 (1989), 218228.Google Scholar
[9] Brešar, M. Jordan homomorphisms revisited. Math. Proc. Camb. Phil. Soc. 144 (2008), 317328.Google Scholar
[10] Burgos, M., Fernández-Polo, F. J., Francisco, J., Garcés, J. J. and Peralta, A. M. 2-local triple homomorphisms on von Neumann algebras and JBW*-triples. J. Math. Anal. Appl. 426 (2015), 4363.Google Scholar
[11] Busby, R. C. Double centralisers and extensions of C*-algebras. Trans. Amer. Math. Soc. 132 (1968), 7999.Google Scholar
[12] Chernoff, P. R. Representations, automorphisms and derivations of some operator algebras. J. Funct. Anal. 12 (1973), 275289.Google Scholar
[13] Chu, C.–H. and Mackey, M. Isometries between JB*-triples. Math. Z. 251 (2005), 615633.Google Scholar
[14] Chu, C.–H., Dand, T., Russo, B. and Ventura, B. Surjective isometries of real C*-algebras. J. London Math. Soc. 47 (1991), 97118.Google Scholar
[15] Cohen, P. J. Factorisations in group algebras. Duke Math. 26 (1959), 199205.Google Scholar
[16] Dales, H. G. Banach Algebras and Automatic Continuity. London Math. Soc. Monogr. 24 (Oxford Sci. Pub., Clarendon Press, Oxford Univ. Press, New York 2000).Google Scholar
[17] Dang, T., Friedman, Y. and Russo, B. Affine geometric proofs of the Banach Stone theorems of Kadison and Kaup. Rocky Mountain J. Math. 20 (1990), 409428.Google Scholar
[18] Garcés, J. J. and A. Peralta, M. Generalised triple homomorphisms and derivations. Canad. J. Math. 65 (2013), 783807.Google Scholar
[19] Herstein, I. N. Jordan homomorphisms. Trans. Amer. Math. Soc. 81 (1956), 331341.Google Scholar
[20] Herstein, I. N. Topics in Ring Theory (University of Chicago Press, Chicago 1969).Google Scholar
[21] Jacobson, N. and Rickart, C. Jordan homomorphisms of rings. Trans. Amer. Math. Soc. 69 (1950), 479502.Google Scholar
[22] Johnson, B. E. The uniqueness of the (complete) norm topology. Bull. Amer. Math. Soc. 73 (1967), 537539.Google Scholar
[23] Johnson, B. E. Continuity of generalised homomorphisms. Bull. London Math. Soc. 19 (1987), 6771.Google Scholar
[24] Kadison, R. V. Isometries of operator algebras. Ann. Math. 54 (1951), 325338.Google Scholar
[25] Kaup, W. Algebraic characterization of symmetric complex Banach manifolds. Math. Ann. 228 (1977), 3964.Google Scholar
[26] Kaup, W. A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183 (1983), 503529.Google Scholar
[27] Kharchenko, V. K. Automorphisms and Derivations of Associative Rings (Kluwer Academic Publisher, Dordrecht/Boston/London 1991).Google Scholar
[28] Lin, Y.–F. and Mathieu, M. Jordan isomorphism of purely infinite C*-algebras. Quart. J. Math. 58 (2007), 249253.Google Scholar
[29] Liu, C.–K. and Shiue, W.–K. Generalised Jordan triple (θ,φ)-derivations on semi-prime rings. Taiwanese J. Math. 11 (2007), 13971406.Google Scholar
[30] Liu, C.–K., Chen, H.–Y. and Liau, P.–K. Generalised skew derivations with nilpotent values on left ideals of rings and Banach algebras. Linear Multilinear Algebra 62 (2014), 453465.Google Scholar
[31] Liu, C.–K. The structure of triple derivations on semisimple Banach *-algebras. Quart. J. Math. 68 (2017), 759779.Google Scholar
[32] Lu, F. Jordan isomorphisms of nest algebras. Proc. Amer. Math. Soc. 131 (2003), 147154.Google Scholar
[33] Martindale, W. S. III Jordan homomorphisms onto nondegenerate Jordan algebras. J. Algebra 133 (1990), 500511.Google Scholar
[34] McCrimmon, K. The radical of a Jordan algebra. Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 671678.Google Scholar
[35] McCrimmon, K. The Zelmanov approach to Jordan homomorphisms of associative algebras. J. Algebra 123 (1989), 457477.Google Scholar
[36] Mackey, M. Local derivations on Jordan triples. Bull. Lond. Math. Soc. 45 (2013), 811824.Google Scholar
[37] Molnár, L. and Zalar, B. On automatic surjectivity of Jordan homomorphisms. Acta Sci. Math. (Szeged) 61 (1995), 413424.Google Scholar
[38] Molnár, L. On isomorphisms of standard operator algebras. Studia Math. 142 (2000), 295302.Google Scholar
[39] Smiley, M. F. Jordan homomorphisms onto prime rings. Trans. Amer. Math. Soc. 84 (1957), 426429.Google Scholar
[40] Sinclair, A. M. Jordan homomorphisms and derivations on semisimple Banach algebras. Proc. Amer. Math. Soc. 24 (1970), 209214.Google Scholar
[41] Sinclair, A. M. Automatic continuity of linear operators. London Math. Soc. Lecture Note Ser. 21 (Cambridge University Press, Cambridge/New York 1976.Google Scholar
[42] Størmer, E. On the Jordan structure of C*-algebras. Trans. Amer. Math. Soc. 120 (1965), 438447.Google Scholar