Published online by Cambridge University Press: 01 March 1999
In the early seventies, Steenrod posed the question: which polynomial algebras over the Steenrod algebra appear as the cohomology ring of a topological space? For odd primes, work of Adams and Wilkerson and Dwyer, Miller and Wilkerson showed that all such algebras are given as the mod-p reduction of the invariants of a pseudo reflection group acting on a polynomial algebra over the p-adic integers. We show that this necessary condition is also sufficient for finding a realization of such a polynomial algebra. We also show that, up to completion, every space with polynomial mod-p cohomology is equivalent to the product of the classifying space of a connected compact Lie group and some spaces determined by irreducible p-adic rational pseudo reflection groups.