Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T15:05:05.382Z Has data issue: false hasContentIssue false

Some expansions in products of hypergeometric functions

Published online by Cambridge University Press:  24 October 2008

G. K. Dhawan
Affiliation:
M.A. College of Technology, Bhopal, India

Extract

1. Making use of the familiar abbreviation

let us adopt a contracted notation for the generalized hypergeometric function AFB(x) and write

where (a) denotes the sequence of parameters a1, a2,…, aA. It will be assumed throughout the present paper that there are A of the ‘a’ parameters, A′ of the ‘a′’ parameters, and so on. Thus [(a)]m is to be interpreted as

with similar interpretations for [(a′)]m, etc.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Appell, P. and Kampé de, Feriet. Functions hypergéométriques et hypersphériques (Paris, 1926).Google Scholar
(2)Bailey, W. N.Some expansions in Bessel functions involving Appell's function F4. Quart. J. of Math. Oxford Ser. 6 (1935), 233238.CrossRefGoogle Scholar
(3)Burchnall, J. L. and Chaundy, W. A.Expansions of Appell's double hypergeometric functions, II. Quart. J. Math. Oxford Ser. 12 (1941), 112128.CrossRefGoogle Scholar
(4)Cablitz, L. and Al-Salam, W. A.Some functions associated with Bessel functions. J. Math. Mech. 12 (1963), 911933.Google Scholar
(5)Erdélyi, A.Higher transcendental functions, vol. II (New York, 1953).Google Scholar
(6)Fox, C.The expansion of the hypergeometric function in terms of similar series. Proc. Lond. Math. Soc. 26 (1927), 201210.CrossRefGoogle Scholar
(7)Rice, S. O. On contour integrals for the product of Bessel functions. Quart. J. Math. Oxford Ser. 6 (1935), 5254.Google Scholar
(8)Slater, L. J.Expansions of generalized Whittaker functions. Proc. Cambridge Philos. Soc. 50 (1954), 628631.CrossRefGoogle Scholar
(9)Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960).Google Scholar
(10)Srivastava, H. M.Some expansions of generalized Whittaker functions. Proc. Cambridge Philos. Soc. 61 (1965), 893896.CrossRefGoogle Scholar
(11)Srivastava, H. M.Some expansions in products of hypergeometric functions. Proc. Cambridge Philos. Soc. 62 (1966), 245247.CrossRefGoogle Scholar
(12)Srivastava, H. M.Some expansions in Bessel functions involving generalized hypergeometric functions. Proc. Nat. Acad. of Sci. India 34 (1966), 145151.Google Scholar
(13)Srivastava, H. M.Generalized Neumann expansions involving generalized hypergeometric functions. Proc. Cambridge Philos. Soc. 63 (1967), 425429.CrossRefGoogle Scholar
(14)Srivastava, H. M.Some expansions associated with Bessel and hypergeometric functions. Rend. Sem. Mat. Univ. Padova (1967), 390396.Google Scholar
(15)Watson, G. N.Theory of Bessel functions (Cambridge, 1944).Google Scholar
(16)Wimp, J. and Fields, J. L.Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (1961), 390396.Google Scholar
(17)Wimp, J. and Luke, Y. L.Expansion formulas for generalized hypergeometric functions. Bend. Circ. Mat. Palermo 11 (1962), 351366.CrossRefGoogle Scholar