Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T03:12:44.985Z Has data issue: false hasContentIssue false

Some cyclic and other inequalities. IV

Published online by Cambridge University Press:  24 October 2008

P. H. Diananda
Affiliation:
University of Singapore

Extract

For t > 0, let

where xn+r = xr ≥ 0 and xr+1 + xr+2 > 0 for each r.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Birkhoff, G. and MacLane, S.A survey of modern algebra, revised ed. (New York, 1953).Google Scholar
(2)Daykin, D. E.Inequalities of a cyclic nature. J. London Math. Soc. 3 (1971), 453462.CrossRefGoogle Scholar
(3)Diananda, P. H.On a cyclic sum. Proc. Glasgow Math. Assoc. 6 (1963), 1113.Google Scholar
(4)Diananda, P. H.Some cyclic and other inequalities. III. Proc. Cambridge Philos. Soc. 73 (1973), 6971.CrossRefGoogle Scholar
(5)Djoković, D. Ž. Sur une inégalité. Proc. Glasgow Math. Assoc. 6 (1963), 110.CrossRefGoogle Scholar
(6)Nowosad, P.Isoperimetric problems in algebras. Comm. Pure Appl. Math. 21 (1968), 401463.CrossRefGoogle Scholar
(7)Zulauf, A.Note on a conjecture of L. J. Mordell. Abh. Math. Sem. Univ. Hamburg 22 (1958), 240241.Google Scholar