Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Householder, Alston S.
1956.
Bibliography on Numerical Analysis.
Journal of the ACM,
Vol. 3,
Issue. 2,
p.
85.
Kloeden, Peter E.
1976.
Chaotic difference equations are dense.
Bulletin of the Australian Mathematical Society,
Vol. 15,
Issue. 3,
p.
371.
KLOEDEN, PETER
DEAKIN, MICHAEL A. B.
and
TIRKEL, A. Z.
1976.
A precise definition of chaos.
Nature,
Vol. 264,
Issue. 5583,
p.
295.
Giannuzzi, G.
1976.
Su una applicazione di un teorema di a. Coppel.
Calcolo,
Vol. 13,
Issue. 3,
p.
289.
Du, Bau-Sen
1983.
Are chaotic functions really chaotic.
Bulletin of the Australian Mathematical Society,
Vol. 28,
Issue. 1,
p.
53.
Coppel, W. A.
1983.
Šarkovskii-minimal orbits.
Mathematical Proceedings of the Cambridge Philosophical Society,
Vol. 93,
Issue. 3,
p.
397.
Kloeden, P. E.
and
Mees, A. I.
1985.
Chaotic phenomena.
Bulletin of Mathematical Biology,
Vol. 47,
Issue. 6,
p.
697.
Du, Bau-Sen
1986.
A note on periodic points of expanding maps of the interval.
Bulletin of the Australian Mathematical Society,
Vol. 33,
Issue. 3,
p.
435.
Lefèvre, Claude
1986.
Threshold behaviour for a chain-binomial S-I-S infectious disease.
Journal of Mathematical Biology,
Vol. 24,
Issue. 1,
p.
59.
Rogers, Thomas D.
Yang, Zhuo-Cheng
and
Yip, Lee-Wah
1986.
Complete chaos in a simple epidemiological model.
Journal of Mathematical Biology,
Vol. 23,
Issue. 2,
p.
263.
Delahaye, Jean-Paul
1988.
Sequence Transformations.
Vol. 11,
Issue. ,
p.
31.
López, V. Jiménez
and
Snoha, L’.
1996.
Full cascades of simple periodic orbits on the interval.
Ukrainian Mathematical Journal,
Vol. 48,
Issue. 12,
p.
1843.
Barton, Reid
and
Burns, Keith
2000.
A Simple Special Case of Sharkovskii's Theorem.
The American Mathematical Monthly,
Vol. 107,
Issue. 10,
p.
932.
Jacob, C.
and
Viet, A.F.
2003.
Epidemiological modeling in a branching population..
Mathematical Biosciences,
Vol. 182,
Issue. 1,
p.
93.
Mitra, Tapan
2005.
Characterization of the turnpike property of optimal paths in the aggregative model of intertemporal allocation.
International Journal of Economic Theory,
Vol. 1,
Issue. 4,
p.
247.
Zhang, Wei-Bin.
2006.
Discrete Dynamical Systems, Bifurcations and Chaos in Economics.
Vol. 204,
Issue. ,
p.
135.
Zhang, Wei-Bin
2006.
Discrete Dynamical Systems, Bifurcations and Chaos in Economics.
Vol. 204,
Issue. ,
p.
79.
Zhang, Wei-Bin
2006.
Discrete Dynamical Systems, Bifurcations and Chaos in Economics.
Vol. 204,
Issue. ,
p.
227.
Zhang, Wei-Bin.
2006.
Discrete Dynamical Systems, Bifurcations and Chaos in Economics.
Vol. 204,
Issue. ,
p.
305.
Blaya, Alejo Barrio
and
López, Víctor Jiménez
2006.
Is Trivial Dynamics That Trivial?.
The American Mathematical Monthly,
Vol. 113,
Issue. 2,
p.
109.