Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T15:15:21.167Z Has data issue: false hasContentIssue false

Singular values and bounded Siegel disks

Published online by Cambridge University Press:  25 May 2017

ANNA MIRIAM BENINI
Affiliation:
Dip. di Matematica, Universita' di Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy. e-mail: [email protected]
NÚRIA FAGELLA
Affiliation:
Dept. de Matemàtiques i Informàtica, Barcelona Graduate School of Mathematics (BGSMath), Gran Via 585, 08007 Barcelona, Spain. e-mail: [email protected]

Abstract

Let f be an entire transcendental function of finite order and Δ be a forward invariant bounded Siegel disk for f with rotation number in Herman's class $\mathcal{H}$. We show that if f has two singular values with bounded orbit, then the boundary of Δ contains a critical point. We also give a criterion under which the critical point in question is recurrent. We actually prove a more general theorem with less restrictive hypotheses, from which these results follow.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BF]Benini, A. M. and Fagella, N. A separation theorem for entire transcendental maps. Proc. Lon. Math. Soc. 110 (2015), 291324.Google Scholar
[Be]Bergweiler, W. Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151188.Google Scholar
[BE]Bergweiler, W. and Eremenko, A. On the singularities of the inverse of a meromorphic function of finite order. Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373.Google Scholar
[Bi]Bishop, C. J. Constructing entire functions by quasiconformal folding. Acta Math. 214 (2015), 160.Google Scholar
[Ch]Chéritat, A. Relatively compact Siegel disks with non-locally connected boundaries. Math. Ann. 349 (2011), 529542.Google Scholar
[CR]Chéritat, A. and Roesch, P. Herman's condition and Siegel disks of bi-critical polynomials. Comm. Math. Phys. 344 (2016), no. 2, 397426.Google Scholar
[De]Deniz, A. A landing theorem for periodic dynamic rays for transcendental entire maps with bounded post-singular set. J. Difference Equ. Appl. 20 (2014), 16271640.Google Scholar
[EL]Eremenko, A. and Lyubich, M. Dynamical properties of some classes of entire functions. Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 9891020.Google Scholar
[Fa]Fagella, N. Dynamics of the complex standard family. J. Math. Anal. Appl. 229 (1999), no. 1, 131.Google Scholar
[Gh]Ghys, E. Transformations holomorphes au voisinage d'une courbe de Jordan. C.R. Acad. Sc. Paris 289 (1984), 383388.Google Scholar
[GK]Goldberg, L. and Keen, L. A finiteness theorem for a dynamical class of entire functions. Ergodic Theory Dynam. Systems 6 (1986) no. 2, 183192.Google Scholar
[GM]Goldberg, L. and Milnor, J. Fixed points of polynomial maps. Part II. Fixed point portraits. Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 1, 5198.Google Scholar
[GS]Graczyk, J. and Światek, G. Siegel disks with critical points on their boundaries. Duke Math. J. 119 (2003), no.3, 189196.Google Scholar
[Ha]Hatcher, A. Algebraic Topology (Cambridge University Press, Cambridge, 2002).Google Scholar
[He1]Herman, M.-R. Sur la conjugaison différentiable des difféomorphismes du cercle á des rotations. Inst. Hautes Études Sci. Publ. Math. 49, (1979) 5233.Google Scholar
[He2]Herman, M. R. Are there critical points on the boundaries of singular domains? Comm. Math. Phys. 99 (1985), no. 4, 593612.Google Scholar
[He3]Herman, M. Conjugaison quasi-symétrique des difféphismes du cercle et applications aux disques singuliers de Siegel, manuscript (1986).Google Scholar
[He4]Herman, M. Conjugaison quasi-symétrique des homeomorphismes analytiques du cercle à des rotations, manuscript (1987).Google Scholar
[Iv]Iversen, F. Recherches sur les fonctions inverses. Comptes Rendus 143 (1906), 877879; Math Werke, no. 1, 655–656.Google Scholar
[Ma1]Mañé, R. Hyperbolicity, sinks and measure in one-dimensional dynamics. Comm. Math. Phys. 100 (1985), no. 4 495524.Google Scholar
[Ma2]Mañé, R. Erratum: Hyperbolicity, sinks and measure in one-dimensional dynamics. Comm. Math. Phys. 112 (1987), no. 4, 721724.Google Scholar
[Ma3]Mañé, R. On a theorem of Fatou. Bol. Soc. Brasil. Mat. (N.S.) 24 (1993), no. 1, 111.Google Scholar
[Mi]Milnor, J. Dynamics in one complex variable. Ann. of Math. Stud. (2006), Princeton University Press.Google Scholar
[Re1]Rempe, L. Dynamics of Exponential Maps, doctoral thesis, Christian-Albrechts-Universität Kiel (2003) http://http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00000781.Google Scholar
[Re2]Rempe, L. On a question of Herman, Baker and Rippon concerning Siegel disks. Bull. Lon. Math. Soc. 36 (2004), 516518.Google Scholar
[Re3]Rempe, L. A landing theorem for periodic rays of exponential maps. Proc. Amer. Math. Soc. 134 (9) (2006), 26392648.Google Scholar
[Re4]Rempe, L. Siegel disks and periodic rays of entire functions. J. Reine Angew. Math. 624 (2008), 81102.Google Scholar
[RvS]Rempe, L. and Van Strien, S. Absence of line fields and Mañé's theorem for non-recurrent transcendental functions. Trans. Amer. Math. Soc. 363 (2011), no. 1, 203228.Google Scholar
[R3S]Rottenfusser, G., Rückert, J., Rempe, L. and Schleicher, D. Dynamic rays of bounded-type entire functions. Ann. of Math. 173 (2010), 77125.Google Scholar
[Ro]Rogers, J. T. Diophantine conditions imply critical points on the boundaries of Siegel disks of polynomials. Comm. Math. Phys. 195 (1998), no. 1, 175193.Google Scholar
[Yo]Yoccoz, J.-C. Analytic linearisation of circle diffeomorphisms. Dynamical systems and small divisors (Cetraro, 1998), Lecture notes in Math. vol. 1784 (Springer, Berlin 2002), 125173.Google Scholar
[Yn]Yoneyama, K. Theory of continuous set of points. Tohoku Math. J. 12 (1917), 43158.Google Scholar